9 research outputs found

    Interference-filter-stabilized external-cavity diode lasers

    Get PDF
    We have developed external-cavity diode lasers, where the wavelength selection is assured by a low loss interference filter instead of the common diffraction grating. The filter allows a linear cavity design reducing the sensitivity of the wavelength and the external cavity feedback against misalignment. By separating the feedback and wavelength selection functions, both can be optimized independently leading to an increased tunability of the laser. The design is employed for the generation of laser light at 698, 780 and 852 nm. Its characteristics make it a well suited candidate for space-born lasers.Comment: 12 pages, 5 figure

    Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    No full text
    We evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathode materials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi0.5Mn1.5O4, the line shape of the Mn L3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni L3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathode materials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are useful enough for the Ni L edge which is far from the O K edge
    corecore