22 research outputs found

    A Locality-Oriented Public Welfare Agency: A Case Study of Boundary Maintenance in a Hostile Environment

    Get PDF
    Boundary maintenance activities are studied in a public welfare agency as a means of establishing the relationship between the nature of these activities and the essential character of a formal organization. Assaults on the agency are observed through a period of social change, in this case an extreme of racial succession among the staff and administration of the agency. Conclusions point to congruence between the character of the organization and its boundary maintenance activity. Skewed or incongruent boundary maintenance produces disorganization and confusion among participants. In the context of racial succession, universalistic patterns are recommended as a solution to the confusion

    First Evidence of Peat Domes in the Congo Basin using LiDAR from a fixed-wing drone

    Get PDF
    This work was funded by CongoPeat, a NERC Large Grant (NE/R016860/1) to S.L.L. and E.T.A.M. (UAV data collection, I.J.D. time), a NERC Open CASE Studentship to S.L.L., I.L. and G.D. and a Phillip Leverhulme Prize to S.L.L. (peat depths).The world’s most extensive tropical peatlands occur in the Cuvette Centrale depression in the Congo Basin, which stores 30.6 petagrams of carbon (95% CI, 6.3–46.8). Improving our understanding of the genesis, development and functioning of these under-studied peatlands requires knowledge of their topography and, in particular, whether the peat surface is domed, as this implies a rain-fed system. Here we use a laser altimeter mounted on an unmanned airborne vehicle (UAV) to measure peat surface elevation along two transects at the edges of a peatland, in the northern Republic of Congo, to centimetre accuracy and compare the results with an analysis of nearby satellite LiDAR data (ICESat and ICESat-2). The LiDAR elevations on both transects show an upward slope from the peatland edge, suggesting a surface elevation peak of around 1.8 m over ~20 km. While modest, this domed shape is consistent with the peatland being rainfed. In-situ peat depth measurements and our LiDAR results indicate that this peatland likely formed at least 10,000 years BP in a large shallow basin ~40 km wide and ~3 m deep.Publisher PDFPeer reviewe

    Current knowledge on the Cuvette Centrale peatland complex and future research directions

    Get PDF
    CongoPeat Early Careers Researchers Group is a group of early career researchers who work directly or in partnership with the NERC funded CongoPeat project (NERC reference no.: NE/R016860/1; https://congopeat.net), which has provided the authors with full or partial financial and academic support.The Cuvette Centrale is the largest tropical peatland complex in the world, covering approximately 145,000 km2 across the Republic of Congo and the Democratic Republic of Congo. It stores ca. 30.6 Pg C, the equivalent of three years of global carbon dioxide emissions and is now the first trans-national Ramsar site. Despite its size and importance as a global carbon store, relatively little is known about key aspects of its ecology and history, including its formation, the scale of greenhouse gas flows, its biodiversity and its history of human activity. Here, we synthesise available knowledge on the Cuvette Centrale, identifying key areas for further research. Finally, we review the potential of mathematical models to assess future trajectories for the peatlands in terms of the potential impacts of resource extraction or climate change.Publisher PDFPeer reviewe

    Current knowledge on the Cuvette Centrale peatland complex and future research directions

    Get PDF
    The Cuvette Centrale is the largest tropical peatland complex in the world, covering approximately 145,000 km2 across the Republic of Congo and the Democratic Republic of Congo. It stores ca. 30.6 Pg C, the equivalent of three years of global carbon dioxide emissions and is now the first trans-national Ramsar site. Despite its size and importance as a global carbon store, relatively little is known about key aspects of its ecology and history, including its formation, the scale of greenhouse gas flows, its biodiversity and its history of human activity. Here, we synthesise available knowledge on the Cuvette Centrale, identifying key areas for further research. Finally, we review the potential of mathematical models to assess future trajectories for the peatlands in terms of the potential impacts of resource extraction or climate change

    Simulating carbon accumulation and loss in the central Congo peatlands

    Get PDF
    Peatlands of the central Congo Basin have accumulated carbon over millennia. They currently store some 29 billion tonnes of carbon in peat. However, our understanding of the controls on peat carbon accumulation and loss and the vulnerability of this stored carbon to climate change is in its infancy. Here we present a new model of tropical peatland development, DigiBog_Congo, that we use to simulate peat carbon accumulation and loss in a rain-fed interfluvial peatland that began forming ~20,000 calendar years Before Present (cal. yr BP, where ‘present’ is 1950 CE). Overall, the simulated age-depth curve is in good agreement with palaeoenvironmental reconstructions derived from a peat core at the same location as our model simulation. We find two key controls on long-term peat accumulation: water at the peat surface (surface wetness) and the very slow anoxic decay of recalcitrant material. Our main simulation shows that between the Late Glacial and early Holocene there were several multidecadal periods where net peat and carbon gain alternated with net loss. Later, a climatic dry phase beginning ~5200 cal. yr BP caused the peatland to become a long-term carbon source from ~3975 to 900 cal. yr BP. Peat as old as ~7000 cal. yr BP was decomposed before the peatland's surface became wetter again, suggesting that changes in rainfall alone were sufficient to cause a catastrophic loss of peat carbon lasting thousands of years. During this time, 6.4 m of the column of peat was lost, resulting in 57% of the simulated carbon stock being released. Our study provides an approach to understanding the future impact of climate change and potential land-use change on this vulnerable store of carbon

    Genesis and development of an interfluvial peatland in the central Congo Basin since the Late Pleistocene

    Get PDF
    The core collection fieldwork was funded by the Royal Society, to S.L.L., Philip Leverhulme Prize to S.L.L. and a NERC CASE award to S.L.L. and G.C.D. The laboratory analysis, data analysis and write-up was funded by CongoPeat, a NERC Large Grant (NE/R016860/1) to S.L.L., I.T.L., A.B., S.E.P., P.G., supporting D.H., G.T., G.C.D., W.H., G.E.B., and Y.E.B.; and NERC Radiocarbon Facility grant (alloc. no. 1688.0313 and 1797.0414) to I.T.L., S.L.L. and G.C.D. Y. G. was supported by the Agence Nationale de la Recherche (ANR) grant ANR-19-CE01-0022. E.S. was supported by the Deutsche Forschungsgemeinschaft (DFG) grant SCHE 903/19–1 and the DFG-Cluster of Excellence ‘The Ocean in the Earth System’ at MARUM.The central Congo Basin contains the largest known peatland complex in the tropics. Here we present a detailed multi-proxy record from a peat core, CEN-17.4, from the centre of a 45 km wide interfluvial peatland (Ekolongouma), the first record of its kind from the central Congo peatlands. We use pollen, charcoal, sedimentological and geochemical data to reconstruct the site's history from the late Pleistocene to the present day. Peat began accumulating at the centre of the peatland ∼19,600 cal BP (∼17,500–20,400 cal BP, 95% confidence interval), and between ∼9500 (9430–9535 cal BP) and 10,500 (10,310–10,660 cal BP) cal BP towards the margins. Pollen data from the peatland centre show that an initial grass- and sedge-dominated vegetation, which burned frequently, was replaced by a Manilkara-type dominated flooded forest at ∼12,640 cal BP, replaced in turn by a more mixed swamp forest at ∼9670 cal BP. Mixed swamp forest vegetation has persisted to the present day, with variations in composition and canopy openness likely caused at least in part by changes in palaeo-precipitation. Stable isotope data (δDn-C29-v&icecorr) indicate a large reduction in precipitation beginning ∼5000 and peaking ∼2000 cal BP, associated with the near-complete mineralization of several metres of previously accumulated peat and with a transition to a drier, more heliophilic swamp forest assemblage, likely with a more open canopy. Although the peatland and associated vegetation recovered from this perturbation, the strong response to this climatic event underlines the ecosystem's sensitivity to changes in precipitation. We find no conclusive evidence for anthropogenic activity in our record; charcoal is abundant only in the Pleistocene part of the record and may reflect natural rather than anthropogenic fires. We conclude that autogenic succession and variation in the amount and seasonality of precipitation have been the most important drivers of ecological change in this peatland since the late Pleistocene.Publisher PDFPeer reviewe

    Palaeo-environmental data from the central Congo peatlands, Likouala Department, Republic of Congo

    No full text
    Compound-specific stable carbon and hydrogen isotopes of plant-wax derived long-chain n-alkanes of core CEN-17.4 Bulk organic parameters of core CEN-17.4 Rock-eval data of core CEN-17.4 Pollen data of core CEN-17.4 Rock-eval data of core EKG02 Rock-eval data of core EKG0
    corecore