24 research outputs found

    ‘The Brick’ is not a brick: a comprehensive study of the structure and dynamics of the central molecular zone cloud G0.253+0.016

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2019 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.In this paper we provide a comprehensive description of the internal dynamics of G0.253+0.016 (a.k.a. ‘the Brick’); one of the most massive and dense molecular clouds in the Galaxy to lack signatures of widespread star formation. As a potential host to a future generation of high-mass stars, understanding largely quiescent molecular clouds like G0.253+0.016 is of critical importance. In this paper, we reanalyse Atacama Large Millimeter Array cycle 0 HNCO J = 4(0, 4) − 3(0, 3) data at 3 mm, using two new pieces of software that we make available to the community. First, SCOUSEPY, a Python implementation of the spectral line fitting algorithm SCOUSE. Secondly, ACORNS (Agglomerative Clustering for ORganising Nested Structures), a hierarchical n-dimensional clustering algorithm designed for use with discrete spectroscopic data. Together, these tools provide an unbiased measurement of the line-of-sight velocity dispersion in this cloud, σvlos,1D=4.4±2.1 km s−1, which is somewhat larger than predicted by velocity dispersion-size relations for the central molecular zone (CMZ). The dispersion of centroid velocities in the plane of the sky are comparable, yielding σvlos,1D/σvpos,1D∼1.2±0.3⁠. This isotropy may indicate that the line-of-sight extent of the cloud is approximately equivalent to that in the plane of the sky. Combining our kinematic decomposition with radiative transfer modelling, we conclude that G0.253+0.016 is not a single, coherent, and centrally condensed molecular cloud; ‘the Brick’ is not a brick. Instead, G0.253+0.016 is a dynamically complex and hierarchically structured molecular cloud whose morphology is consistent with the influence of the orbital dynamics and shear in the CMZ

    High-resolution ALMA observations of compact discs in the wide-binary system Sz 65 and Sz 66

    Get PDF
    Context. Substructures in disc density are ubiquitous in the bright extended discs that are observed with high resolution. These substructures are intimately linked to the physical mechanisms driving planet formation and disc evolution. Surveys of star-forming regions find that most discs are in fact compact, less luminous, and do not exhibit these same substructures. It remains unclear whether compact discs also have similar substructures or if they are featureless. This suggests that different planet formation and disc evolution mechanisms operate in these discs. Aims. We investigated evidence of substructure within two compact discs around the stars Sz 65 and Sz 66 using high angular resolution observations with ALMA at 1.3 mm. The two stars form a wide-binary system with 6″.36 separation. The continuum observations achieve a synthesised beam size of 0″.026 × 0″.018, equivalent to about 4.0 × 2.8 au, enabling a search for substructure on these spatial scales and a characterisation of the gas and dust disc sizes with high precision. Methods. We analysed the data in the image plane through an analysis of reconstructed images, as well as in the uv plane by non-parametrically modelling the visibilities and by an analysis of the ¹²CO (2–1) emission line. Comparisons were made with highresolution observations of compact discs and radially extended discs. Results. We find evidence of substructure in the dust distribution of Sz 65, namely a shallow gap centred at ≈20 au, with an emission ring exterior to it at the outer edge of the disc. Ninety percent of the measured continuum flux is found within 27 au, and the distance for ¹²CO is 161 au. The observations show that Sz 66 is very compact: 90% of the flux is contained within 16 au, and 90% of the molecular gas flux lies within 64 au. Conclusions. While the overall prevalence and diversity of substructure in compact discs relative to larger discs is yet to be determined, we find evidence that substructures can exist in compact discs

    Radiation hydrodynamics simulations of massive star formation using Monte Carlo radiation transfer

    No full text
    This is the author accepted manuscript.We present a radiation hydrodynamics simulation of the formation of a massive star using a Monte Carlo treatment for the radiation field. We find that strong, high speed bipolar cavities are driven by the radiation from the protostar, and that accretion occurs stochastically from a circumstellar disc. We have computed spectral energy distributions and images at each timestep, which may in future be used to compare our models with photometric, spectroscopic, and interferometric observations of young massive stellar objects
    corecore