5,302 research outputs found
Laser diode initiated detonators for space applications
Ensign Bickford Aerospace Company (EBAC) has over ten years of experience in the design and development of laser ordnance systems. Recent efforts have focused on the development of laser diode ordnance systems for space applications. Because the laser initiated detonators contain only insensitive secondary explosives, a high degree of system safety is achieved. Typical performance characteristics of a laser diode initiated detonator are described in this paper, including all-fire level, function time, and output. A finite difference model used at EBAC to predict detonator performance, is described and calculated results are compared to experimental data. Finally, the use of statistically designed experiments to evaluate performance of laser initiated detonators is discussed
Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells
The insulin/IGF-1 (insulin-like growth factor 1)-activated protein kinase Akt (also known as protein kinase B) phosphorylates Ser(487) in the ‘ST loop’ (serine/threonine-rich loop) within the C-terminal domain of AMPK-α1 (AMP-activated protein kinase-α1), leading to inhibition of phosphorylation by upstream kinases at the activating site, Thr(172). Surprisingly, the equivalent site on AMPK-α2, Ser(491), is not an Akt target and is modified instead by autophosphorylation. Stimulation of HEK (human embryonic kidney)-293 cells with IGF-1 caused reduced subsequent Thr(172) phosphorylation and activation of AMPK-α1 in response to the activator A769662 and the Ca(2+) ionophore A23187, effects we show to be dependent on Akt activation and Ser(487) phosphorylation. Consistent with this, in three PTEN (phosphatase and tensin homologue deleted on chromosome 10)-null tumour cell lines (in which the lipid phosphatase PTEN that normally restrains the Akt pathway is absent and Akt is thus hyperactivated), AMPK was resistant to activation by A769662. However, full AMPK activation could be restored by pharmacological inhibition of Akt, or by re-expression of active PTEN. We also show that inhibition of Thr(172) phosphorylation is due to interaction of the phosphorylated ST loop with basic side chains within the αC-helix of the kinase domain. Our findings reveal that a previously unrecognized effect of hyperactivation of Akt in tumour cells is to restrain activation of the LKB1 (liver kinase B1)–AMPK pathway, which would otherwise inhibit cell growth and proliferation
Magnetically Driven Accretion in the Kerr Metric III: Unbound Outflows
We have carried out fully relativistic numerical simulations of accretion
disks in the Kerr metric. In this paper we focus on the unbound outflows that
emerge self-consistently from the accretion flow. These outflows are found in
the axial funnel region and consist of two components: a hot, fast, tenuous
outflow in the axial funnel proper, and a colder, slower, denser jet along the
funnel wall. Although a rotating black hole is not required to produce these
unbound outflows, their strength is enhanced by black hole spin. The
funnel-wall jet is excluded from the axial funnel due to elevated angular
momentum, and is also pressure-confined by a magnetized corona. The tenuous
funnel outflow accounts for a significant fraction of the energy transported to
large distances in the higher-spin simulations. We compare the outflows
observed in our simulations with those seen in other simulations.Comment: 33 pages, 8 figures, ApJ submitte
Hot Settling Accretion Flow onto a Spinning Black Hole
We study the structure and properties of hot MHD accretion onto a Kerr black
hole. In such a system, the hole is magnetically coupled to the inflowing gas
and exerts a torque onto the accretion flow. A hot settling flow can form
around the hole and transport the angular momentum outward, to the outer edge
of the flow. Unlike other hot flows, such as advection- and
convection-dominated flows and inflow-outflow solutions (ADAFs, CDAFs, and
ADIOS), the properties of the hot settling flow are determined by the spin of
the central black hole, but are insensitive to the mass accretion rate.
Therefore, it may be possible to identify rapidly spinning BHs simply from
their broad-band spectra.
Observationally, the hot settling flow around a Kerr hole is somewhat similar
to other hot flows in that they all have hard, power-law spectra and relatively
low luminosities. Thus, most black hole candidates in the low/hard and,
perhaps, intermediate X-ray state may potentially accrete via the hot settling
flow. However, a settling flow will be somewhat more luminous than
ADAFs/CDAFs/ADIOS, will exhibit high variability in X-rays, and may have
relativistic jets. This suggests that galactic microquasars and active galactic
nuclei may be powered by hot settling flows. We identify several galactic X-ray
sources as the best candidates.Comment: 7 pages, 1 figure. Submitted to Ap
Towards a New Standard Theory for Astrophysical Disk Accretion
We briefly review recent developments in black hole accretion disk theory,
placing new emphasis on the vital role played by magnetohydrodynamic (MHD)
stresses in transporting angular momentum. The apparent universality of
accretion-related outflow phenomena is a strong indicator that vertical
transport of angular momentum by large-scale MHD torques is important and may
even dominate radial transport by small-scale MHD turbulence. This leads to an
enhanced overall rate of angular momentum transport and allows accretion of
matter to proceed at an interesting rate. Furthermore, we argue that when
vertical transport is important, the radial structure of the accretion disk is
modified and this affects the disk emission spectrum. We present a simple model
demonstrating that energetic, magnetically-driven outflows give rise to a disk
spectrum that is dimmer and redder than a standard accretion disk accreting at
the same rate. We briefly discuss the implications of this key result for
accreting black holes in different astrophysical systems.Comment: Accepted for publication as brief review in Mod. Phys. Let.
What's the point of knowing how?
Why is it useful to talk and think about knowledge-how? Using Edward Craig’s discussion of the function of the concepts of knowledge and knowledge-how as a jumping off point, this paper argues that considering this question can offer us new angles on the debate about knowledge-how. We consider two candidate functions for the concept of knowledge-how: pooling capacities, and mutual reliance. Craig makes the case for pooling capacities, which connects knowledge-how to our need to pool practical capacities. I argue that the evidence is much more equivocal. My suggested diagnosis is that the concept of knowledge-how plays both functions, meaning that the concept of knowledge-how is inconsistent, and that the debate about knowledge-how is at least partly a metalinguistic negotiation. In closing, I suggest a way to revise the philosophical concept of knowledge how
Sites of Biosynthesis of Outer and Inner Membrane Proteins of Neurospora crassa Mitochondria
Outer and inner membranes of Neurospora crassa mitochondria were separated by the combined swelling, shrinking, sonication procedure. Membranes were characterized by electron microscopy and by marker enzyme activities. A red carotenoid pigment was found to be concentrated in the outer membrane. The inner mitochondrial membrane was resolved into about 20 protein bands on polyacrylamide gel electrophoresis, whereas the outer membrane shows essentially one single protein band. Only negligible incorporation of radioactive amino acids occurs into outer membrane when isolated mitochondria are synthesizing polypeptide chains. In agreement with this observation labeling of outer membrane protein is almost entirely blocked, when whole Neurospora cells are incubated with radioactive amino acids in the presence of cycloheximide, an inhibitor of cytoplasmic protein synthesis. Finally, the essential electrophoretic protein band from outer membrane does not become labeled when mitochondria are incubated with radioactive amino acids either in vitro or in vivo in the presence of cycloheximide. It is concluded that the vast majority, if not all, of the outer membrane protein is synthesized by the cytoplasmic system and that polypeptide chains formed by the mitochondrial ribosomes are integrated into the inner mitochondrial membrane
Relativistic Hydrodynamics around Black Holes and Horizon Adapted Coordinate Systems
Despite the fact that the Schwarzschild and Kerr solutions for the Einstein
equations, when written in standard Schwarzschild and Boyer-Lindquist
coordinates, present coordinate singularities, all numerical studies of
accretion flows onto collapsed objects have been widely using them over the
years. This approach introduces conceptual and practical complications in
places where a smooth solution should be guaranteed, i.e., at the gravitational
radius. In the present paper, we propose an alternative way of solving the
general relativistic hydrodynamic equations in background (fixed) black hole
spacetimes. We identify classes of coordinates in which the (possibly rotating)
black hole metric is free of coordinate singularities at the horizon,
independent of time, and admits a spacelike decomposition. In the spherically
symmetric, non-rotating case, we re-derive exact solutions for dust and perfect
fluid accretion in Eddington-Finkelstein coordinates, and compare with
numerical hydrodynamic integrations. We perform representative axisymmetric
computations. These demonstrations suggest that the use of those coordinate
systems carries significant improvements over the standard approach, especially
for higher dimensional studies.Comment: 10 pages, 4 postscript figures, accepted for publication in Phys.
Rev.
Discovery of a New Nearby Star
We report the discovery of a nearby star with a very large proper motion of
5.06 +/- 0.03 arcsec/yr. The star is called SO025300.5+165258 and referred to
herein as HPMS (high proper motion star). The discovery came as a result of a
search of the SkyMorph database, a sensitive and persistent survey that is well
suited for finding stars with high proper motions. There are currently only 7
known stars with proper motions > 5 arcsec/yr. We have determined a preliminary
value for the parallax of 0.43 +/- 0.13 arcsec. If this value holds our new
star ranks behind only the Alpha Centauri system (including Proxima Centauri)
and Barnard's star in the list of our nearest stellar neighbors. The spectrum
and measured tangential velocity indicate that HPMS is a main-sequence star
with spectral type M6.5. However, if our distance measurement is correct, the
HPMS is underluminous by 1.2 +/- 0.7 mag.Comment: 5 pages, 3 figures. Submitted to ApJ Letter
- …
