499 research outputs found

    Detecting Differential Rotation and Starspot Evolution on the M dwarf GJ 1243 with Kepler

    Get PDF
    We present an analysis of the starspots on the active M4 dwarf GJ 1243, using four years of time series photometry from Kepler. A rapid P=0.592596±0.00021P = 0.592596\pm0.00021 day rotation period is measured due to the \sim2.2\% starspot-induced flux modulations in the light curve. We first use a light curve modeling approach, using a Monte Carlo Markov Chain sampler to solve for the longitudes and radii of the two spots within 5-day windows of data. Within each window of time the starspots are assumed to be unchanging. Only a weak constraint on the starspot latitudes can be implied from our modeling. The primary spot is found to be very stable over many years. A secondary spot feature is present in three portions of the light curve, decays on 100-500 day timescales, and moves in longitude over time. We interpret this longitude shearing as the signature of differential rotation. Using our models we measure an average shear between the starspots of 0.0047 rad day1^{-1}, which corresponds to a differential rotation rate of ΔΩ=0.012±0.002\Delta\Omega = 0.012 \pm 0.002 rad day1^{-1}. We also fit this starspot phase evolution using a series of bivariate Gaussian functions, which provides a consistent shear measurement. This is among the slowest differential rotation shear measurements yet measured for a star in this temperature regime, and provides an important constraint for dynamo models of low mass stars.Comment: 13 pages, 7 figures, ApJ Accepte

    BOSS Ultracool Dwarfs I: Colors and Magnetic Activity of M and L dwarfs

    Get PDF
    We present the colors and activity of ultracool (M7-L8) dwarfs from the Tenth Data Release of the Sloan Digital Sky Survey (SDSS). We combine previous samples of SDSS M and L dwarfs with new data obtained from the Baryon Oscillation Sky Survey (BOSS) to produce the BOSS Ultracool Dwarf (BUD) sample of 11820 M7-L8 dwarfs. By combining SDSS data with photometry from the Two Micron All Sky Survey and the Wide-Field Infrared Sky Explorer mission, we present ultracool dwarf colors from izi-z to W2W3W2-W3 as a function of spectral type, and extend the SDSS-2MASS-WISE color locus to include ultracool dwarfs. The izi-z, iJi-J, and zJz-J colors provide the best indication of spectral type for M7-L3 dwarfs. We also examine ultracool dwarf chromospheric activity through the presence and strength of Hα\alpha emission. The fraction of active dwarfs rises through the M spectral sequence until it reaches \sim90% at spectral type L0. The fraction of active dwarfs then declines to 50% at spectral type L5; no Hα\alpha emission is observed in the late-L dwarfs in the BUD sample. The fraction of active L0-L5 dwarfs is much higher than previously observed. The strength of activity declines with spectral type from M7 through L3, after which the data do not show a clear trend. Using one-dimensional chromosphere models, we explore the range of filling factors and chromospheric temperature structures that are consistent with Hα\alpha observations of M0-L7 dwarfs. M dwarf chromospheres have a similar, smoothly varying range of temperature and surface coverage while L dwarf chromospheres are cooler and have smaller filling factors.Comment: 24 pages and 13 figures, submitted to AJ. A short video describing these results can be found at https://www.youtube.com/watch?v=wwX5WkuJCU

    Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -

    Get PDF
    We report the latest view of Kepler solar-type (G-type main-sequence) superflare stars, including recent updates with Apache Point Observatory (APO) 3.5m telescope spectroscopic observations and Gaia-DR2 data. First, we newly conducted APO3.5m spectroscopic observations of 18 superflare stars found from Kepler 1-min time cadence data. More than half (43 stars) are confirmed to be "single" stars, among 64 superflare stars in total that have been spectroscopically investigated so far in this APO3.5m and our previous Subaru/HDS observations. The measurements of vsiniv\sin i (projected rotational velocity) and chromospheric lines (Ca II H\&K and Ca II 8542\AA) support the brightness variation of superflare stars is caused by the rotation of a star with large starspots. We then investigated the statistical properties of Kepler solar-type superflare stars by incorporating Gaia-DR2 stellar radius estimates. As a result, the maximum superflare energy continuously decreases as the rotation period ProtP_{\mathrm{rot}} increases. Superflares with energies 5×1034\lesssim 5\times10^{34} erg occur on old, slowly-rotating Sun-like stars (ProtP_{\mathrm{rot}}\sim25 days) approximately once every 2000--3000 years, while young rapidly-rotating stars with ProtP_{\mathrm{rot}}\sim a few days have superflares up to 103610^{36} erg. The maximum starspot area does not depend on the rotation period when the star is young, but as the rotation slows down, it starts to steeply decrease at ProtP_{\mathrm{rot}}\gtrsim12 days for Sun-like stars. These two decreasing trends are consistent since the magnetic energy stored around starspots explains the flare energy, but other factors like spot magnetic structure should also be considered.Comment: 71 pages, 31 figures, 10 tables. Accepted for publication in The Astrophysical Journal (on March 29, 2019
    corecore