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ABSTRACT

We present an analysis of the starspots on the active M4 dwarf GJ 1243, using 4 years of time series photometry
from Kepler. A rapid P = 0.592596 ± 0.00021 days rotation period is measured due to the ∼2.2% starspot-induced
flux modulations in the light curve. We first use a light curve modeling approach, using a Monte Carlo Markov
Chain sampler to solve for the longitudes and radii of the two spots within 5 day windows of data. Within each
window of time the starspots are assumed to be unchanging. Only a weak constraint on the starspot latitudes can be
implied from our modeling. The primary spot is found to be very stable over many years. A secondary spot feature
is present in three portions of the light curve, decays on 100–500 day timescales, and moves in longitude over time.
We interpret this longitude shearing as the signature of differential rotation. Using our models we measure an
average shear between the starspots of 0.0047 rad day−1, which corresponds to a differential rotation rate of
ΔW = 0.012 ± 0.002 rad day−1. We also fit this starspot phase evolution using a series of bivariate Gaussian
functions, which provides a consistent shear measurement. This is among the slowest differential rotation shear
measurements yet measured for a star in this temperature regime, and provides an important constraint for dynamo
models of low-mass stars.

Key words: starspots – stars: activity – stars: low-mass

1. INTRODUCTION

For low-mass, fully convective stars, the nature of the
magnetic dynamo and the role of differential rotation is not so
clear. Some radial and surface differential rotation is expected
to exist, due to the combination of rotation and convection.
However, despite the deep convective zones of M dwarfs, their
long convective turnover timescales result in a lower amplitude
of surface differential rotation or shear (Küker & Rüdiger 2008;
Kitchatinov & Olemskoy 2011; the Ω effect). Since these stars
are nearly or fully convective from surface to core, and
therefore lack a “tachocline” interface region in which to store
toroidal magnetic field, the dynamo mechanism must be
fundamentally different than the popular αW dynamo model
for the Sun (e.g., Parker 1955; Schrijver & Zwaan 2000).
Instead, this convectively driven process is known as an α2

dynamo. For rapidly rotating M dwarfs, the magnetic field
strength is expected to be increased, which suppresses
differential rotation and forces nearly solid-body rotation
(Browning 2008). Without strong radial or surface differential
rotation to organize the global magnetic field, activity cycles
may not be present, and the surface magnetic topology is
predicted by some models to be highly non-axisymmetric and
multipolar (e.g., Chabrier & Küker 2006).

However, observations of many low-mass stars reveal highly
organized, strongly poloidal magnetic fields (e.g., Morin
et al. 2008b) and prominent long-lived starspot features (e.g.,
Barnes et al. 2005). Some rapidly rotating low-mass stars show
indications of polar “starspot caps” possibly due to this large
scale dipolar field (Donati & Collier Cameron 1997; Morin
et al. 2008a), while others do not (Barnes et al. 2004; Morin
et al. 2010). Though differential rotation is expected to play a
lesser role for these rapidly rotating low-mass stars, even small
amounts of differential rotation may help to organize the
chaotic, α2 driven magnetic fields in to a coherent, axisym-
metric field (Kitchatinov & Olemskoy 2011), capable of

producing very long-lived polar spot features. Therefore, given
the wide variety of observed surface magnetic topologies, and
the complex inter-dependence of rotation, differential rotation,
and the magnetic field, measuring differential rotation rates for
low-mass stars is a high priority for constraining dynamo
theory.
Rotation can now be measured with relative ease for many

stars, for example using spectral line broadening that produces
v sin i measurements, or periodic flux modulations due to
starspots in precision space-based time series photometry. Data
from the Kepler mission (Borucki et al. 2010) has revolutio-
nized the study of stellar rotation using starspot modulations,
with tens of thousands of stars having measuring rotation
periods (Reinhold et al. 2013; McQuillan et al. 2014), and has
revealed starspot properties for stars ranging from solar mass
(Bonomo & Lanza 2012) to brown dwarfs (Gizis et al. 2013).
Differential rotation, however, is notoriously difficult to

detect for stars. Spectral techniques can trace active regions at
different latitudes for stars with lower activity levels such as the
Sun (Bertello et al. 2012). Detecting differential rotation via
Zeeman Doppler Imaging (ZDI; Semel 1989; Donati &
Brown 1997) requires comparing complex surface magnetic
reconstructions or maps between subsequent visits. Photo-
metric surveys may be able to produce differential rotation rates
for an ensemble of active stars (Reinhold & Reiners 2013). A
recent blind survey of competing techniques for detecting
rotation and differential rotation from model photometry
showed excellent agreement in recovering rotation periods
from active stars. However, a complex degeneracy was found
between differential rotation rate, starspot lifetimes, and the
number of starspots present, and little agreement between
competing methods and the model light curves (Aigrain
et al. 2015). In general, methods for detecting differential
rotation in photometry follow one of two approaches.
(1) Fourier methods, which measure the broadening or splitting
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of peaks in the power spectrum, auto-correlation function, or
periodogram, or equivalently by decomposition of the light
curve using sine functions (Reinhold et al. 2013). These
methods utilize the entire light curve at once, and are efficient
for analyzing large volumes of data from many stars, but may
suffer more from the degeneracies mentioned above.
(2) Tracking specific starspot features either via light curve
inversion (Roettenbacher et al. 2013), or light curve modeling
for individual starspots (Frasca et al. 2011). These methods are
more computationally expensive, but their results seem robust
for rapidly rotating stars with long-lived spots.

In this paper we venture into a relatively new region of
starspot evolution parameter space, detecting very gradual
differential rotation and spot decay for a rapidly rotating M
dwarf. The fast time cadence and continuous monitoring
provided by Kepler, along with a short stellar rotation period,
allow us to trace small changes in starspot phase and amplitude
over long periods of time. In Section 2.2 we describe our target,
the active M dwarf GJ 1243, and the previous investigations of
this low-mass star with Kepler. Our detailed light curve
modeling is presented in Section 3. We trace small changes in
starspot phase over 4 years, and interpret this as a signature of
differential rotation in Section 4. A simpler approach to detect
this slow differential rotation by modeling the phase evolution
with Gaussians is given in Section 5. We place the differential
rotation signal from GJ 1243 in the context of other cool stars,
and compare the Kepler photometric results with older ground-
based data in Section 6. Finally, in Section 7 we provide a
summary of our results, and discuss the great potential for
understanding starspots and the stellar dynamo still to be
realized from the unique photometric Kepler database and
future missions.

2. GJ 1243

The target of our study is the nearby mid-M dwarf, GJ 1243
(Kepler ID # 09726699). This star has a short rotation period of
0.5926 days that has been noted in previous studies of Kepler
light curves (Savanov & Dmitrienko 2011; McQuillan
et al. 2013). The spectral type has been measured as M4
(Hawley et al. 2014), placing GJ 1243 near the fully-
convective boundary where stars are expected to remain
magnetically active for many Gyr (Reid & Hawley 2000;
West et al. 2008). Using the parallax distance of 11.9 pc from
Lépine & Shara (2005), the apparent K-band magnitude from
Zacharias et al. (2013), and the MK-mass relation from
Delfosse et al. (2000), we estimate a mass for GJ 1243 of
0.24Me. The convective turnover timescale for stars in this

mass range (assuming M = 0.235Me) from Kiraga & Stepien
(2007) is quite slow at 70convt » days. Comparing this
timescale to the rotation period, we find GJ 1243 has a very
low Rossby number of R P 0.008o rot convt= » . Lucky imaging
of GJ 1243, as well as ground-based spectroscopy, have shown
no indications of a binary companion (J. P. Wisniewski 2015,
in preparation). In addition, GJ 1243 has been the subject of
detailed flare activity studies with Kepler data, producing the
largest catalog of M dwarf flares ever observed for a single star
(Davenport et al. 2014; Hawley et al. 2014). In this section we
describe our treatment of the Kepler data for this active M
dwarf, removing systematic trends from the light curve, and
detecting a periodic signal.

2.1. Kepler Long Cadence Data

The Kepler light curve for GJ 1243 contains dramatic stellar
variability in the form of flares and starspots. Ramsay et al.
(2013) have examined the flare energy distribution using one
quarter (Q6) of data from Kepler. Davenport et al. (2014) and
Hawley et al. (2014) used 11 months of Kepler short cadence
(1 minute) data for GJ 1243, over 300 days worth in total, to
robustly measure the flare rate and develop a statistical
understanding of the flare morphology from this very active
dwarf. For these flare studies the starspot signature had been
treated as a noise source to be smoothed out.
In the present investigation, we utilized all available long

cadence (30 minutes) Kepler data for GJ 1243 to study the
evolution of the starspots while minimizing the impact of small
amplitude flares. GJ 1243 was observed in 14 separate quarters
of Kepler data (Q0–Q6, Q8–Q10, Q12–Q14, and Q16–Q17),
spanning over 4 years of observation (MJD 54953.04 through
56423.50). We used the most recent reduction of the Kepler
data available, including the “PDC-MAP” Bayesian de-
trending analysis from (Smith et al. 2012). The entire 4 year
catalog PDC-MAP light curve for GJ 1243 is shown in
Figure 1. Data from Q7, Q11, and Q15 were not available due
to the failure of CCD Module 3 in 2010, which GJ 1243
resided on for one quarter of the year.
In Figure 1, large discontinuities in the flux are apparent

between quarters, as well as systematic trends in the mean flux
within quarters. These long timescale variations are systemic to
Kepler data, due to spacecraft drift and calibration limitations,
and are not astrophysical. For every quarter, we fit and
subtracted low order (linear or quadratic) polynomials from the
data to remove these systematic errors and discontinuities.
Because the stellar rotation period is so short, and each quarter
contains on average ∼150 rotations, these polynomial fits do

Figure 1. Long cadence PDC MAP light curve for GJ 1243. Pixel shade (light to dark) indicates the density of epochs. Breaks in the light curve due to quarterly
spacecraft rolls are indicated (gray dashed lines).
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not affect the starspot signal on the timescales we are
interested in.

Large amplitude flares were also present in our data, visible
as positive flux excursions throughout the light curve in
Figure 1. While the short cadence Kepler data for GJ 1243 is a
treasure trove for flare studies (e.g., Davenport et al. 2014),
only the largest energy flares are visible in the 30 minutes data
(see Walkowicz et al. 2011). To remove the flares from our
analysis, we smoothed the light curve with a 12 hr “boxcar”
filter, and then discarded epochs with fluxes that deviated by
more than 0.3% from the smooth flux. This boxcar smoothing
was only used to remove outlying epochs, and was not used in
our starspot analysis. These smoothing values were arrived at
by eye to remove the most dramatic flares and outliers in the
data. As this was not a comprehensive outlier removal scheme,
some small amplitude flares and data systematics remained in
the light curve. These small amplitude excursions occurred
stochastically throughout the light curve, had no dependence on
rotational phase, and therefore did not affect our spot modeling
results. As discussed in Lurie et al. (2015), saturation can affect
the Kepler light curves for flare stars during the brightest flare
events. However, the starspot modulations for GJ 1243 were
low amplitude, and the quiescent flux level was not near the
saturation limit. While the brightest flux excursions due to
flares may be affected by saturation, our starspot analysis is not.
Our final, inter-, and intra-quarter polynomial detrended, flare-
cleaned light curve for GJ 1243 contained 47,478 epochs of
data over the 4 years of Kepler long cadence observations.

2.2. Periodic Signal

The rapid rotation of GJ 1243 was first detected from
periodic flux modulations due to starspots by Irwin et al.
(2011) using ground-based photometry from the MEarth
project (Nutzman & Charbonneau 2008; Irwin et al. 2009).
Following the initial Q0 release of Kepler data, Savanov &
Dmitrienko (2011) published the first analysis of the starspots
on GJ 1243, using 44 days of continuous long cadence data.
They reported a rotation period of 0.593 days for GJ 1243, and
found that GJ 1243 exhibited two starspot features, separated in
longitude by 203°, and both stable in position over the 44 days
of observation (equal to ∼74 rotation periods). The starspots
covered 3.2% of the visible stellar surface, with a modest
amount of growth reported over Q0.

A study searching for rotation periods using the autocorrela-
tion function for ∼2500 Kepler M dwarf stars was carried out
by McQuillan et al. (2013) using 10 months of Kepler
photometry. They reported a rotation period of 0.593 days for
GJ 1243 as well. However, a larger scale analysis of over
40,000 active Kepler stars by Reinhold et al. (2013), using the
Lomb–Scargle periodogram method (Lomb 1976; Scar-
gle 1982), did not report a rotation period for GJ 1243, as
the star’s rapid rotation was below their period cut off.

These previous studies of GJ 1243 only reported the stellar
rotation period to an accuracy of 0.001 day (∼86 s). With such
a short rotation period for GJ 1243, an error of 0.001 days
would result in phase-folded data being out of phase by an
entire rotation within one year. Thus, to measure any real phase
evolution of the starspot features over 4 years we must
determine the most accurate mean rotation period possible.
We computed the normalized Lomb–Scargle periodogram
using the entire 4 year detrended long cadence light curve,
using no frequency oversampling or smoothing. The strongest

peak in the resulting periodogram was very narrow, and had a
period of 0.592596 days. We then computed the Lomb–Scargle
periodogram over each of the 14 quarters of data individually.
The mean period from all quarters we recovered was
0.592673 days, which was only ∼6.5 s longer than the period
found from all quarters simultaneously. These 14 period
estimates had a standard deviation of 0.00021 days, or about
18 s, which we adopt as the period uncertainty. Since the
rotation period is very stable over the course of the Kepler
observations, we assume the period determined from the entire
light curve, P = 0.592596 ± 0.00021 days, for our analysis.
We then empirically defined the ephemeris of the flux

minimum by phase-folding the entire Kepler light curve at this
rotation period. The phase of flux minimum was fit using a least
squares regression with a Gaussian function, which determined an
ephemeris of t 2454833.11567807 0.000150 =  . In Figure 2
we show median-smoothed 10 day windows of the entire GJ

Figure 2. Phase-folded, median smoothed light curves for GJ 1243 from
10 day windows of time, showing the slow evolution of the starspot
modulations over time. The vertical position for each curve corresponds to
the start time of the 10 day window on the left axis. Each time window is scaled
to the same relative flux, shown on the right axis. The primary dip, centered at
Phase = 0, corresponds to the long-lived starspot.
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1243 light curve, phased using this rotation period and
ephemeris. The primary dip in brightness stays fixed near
Phase = 0 over the 4 years of observation, which is due to the
primary starspot. Slow evolution in both phase and amplitude
of the secondary starspot feature is clearly seen. The secondary
starspot is almost entirely absent at Time ∼ 700 days (using
units of time as BJD—2454833.11567 days), while the primary
and secondary starspots appear to have nearly equal amplitudes
at Time ∼ 1100.

Given the long starspot evolution timescale and short
rotation period for GJ 1243, along with the nearly continuous
Kepler light curve for most of the 4 year timespan, we are able
to study the change in starspot properties in much higher
temporal detail than illustrated in Figure 2. Using 10 day
windows of time, we show the 4 year continuous phase
evolution of flux from GJ 1243 in Figure 3. For visual clarity
the data is folded twice in phase. White vertical gaps
correspond to quarters with no Kepler data, as seen in Figure 1.
Each column of pixels in this phase versus time flux map
contains data spanning 10 days. This binning resulted in ∼16
rotation periods per column, with an average of over 400 data
points. Each row spans 0.04 in Phase, or equivalently a 14◦. 4
slice in longitude. The median value for the flux within each
(time, phase) pixel corresponds to the shading, with the darkest
regions corresponding to a flux 1.5% below the median value,
and the lightest pixels 1.5% above the median flux.

The dark band centered at Phase = 0 in Figure 3, which
extends throughout the timespan of the data, is due to the
primary starspot. This feature does not significantly change in
phase over the course of our data. The flux amplitude for the
primary spot is also nearly constant. There is an apparent
change in the starspot flux amplitude around day ∼500 and day
∼900, due to the the presence of the secondary starspot
combined with the systematic errors in the flux calibration. The
starspot features seen in Figure 3 are very large compared to
spots seen on the Sun, appearing to span 50°–90° in longitude.
The detailed geometries of these features cannot be determined
from this phase versus time flux map, and each observed
“starspot” may in fact be a large spot group. Additionally, we

cannot constrain the total starspot coverage, which may include
many smaller spots and active regions across the entire stellar
surface. Instead we are observing the total flux asymmetry due
to these spots or spot groups.
The secondary starspot feature continuously changes in both

phase and flux amplitude (equivalently pixel shade) in this
diagram. This secondary feature seems to emerge and decay at
least three times over the 4 year data set, each time appearing
nearly on the opposite hemisphere of the star and evolving
toward the primary starspot. Note, a decrease in phase
corresponds to a starspot advancing in longitude in the
direction of rotation over time. We interpret the slow, linear
phase evolution of the secondary starspot to be the signature of
differential rotation.

3. MODELING THE LIGHT CURVE

To quantitatively trace the differential rotation on GJ 1243,
we must determine the precise sizes and positions of the
starspots over time. To accomplish this we performed a detailed
fit to the Kepler light curve using the starspot modeling
software from L. Hebb (2015, in preparation). Here we give a
brief overview of this light curve modeling program, as well as
our specific use with the GJ 1243 system.
The starspot modeling code simulates the star as a sphere

with uniform surface brightness and limb darkening onto which
circular, gray starspots are fixed. Limb darkening is imple-
mented by treating the star as a series of overlapping,
concentric circles with brightness values defined by the four-
coefficient limb darkening model of Claret & Bloemen (2011).
Starspots are modeled as non-moving circular regions with a
fixed flux contrast relative to the photosphere, and may be
placed anywhere on the stellar surface. At each time step in the
input light curve, as the model star rotates, the code calculates
the flux blocked by the spots rotating in and out of view, and
thus generates a synthetic light curve.
The program can generate a synthetic light curve for a single

star, with or without a transiting exoplanet, and with the spin-
axis of the star and orbital axis of the planet in any orientation

Figure 3. Continuous phased light curve map for the entire Kepler long cadence data set. Pixel shade, from dark to light, indicates the median flux in each (time,
phase) bin. Vertical white gaps correspond to times with no Kepler data, as in Figure 1. Pixels span 10 days in time and 0.04 in phase. The starspots are seen as dark
regions in this diagram, which evolve in time from left to right.
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(aligned or misaligned). To derive the properties (latitude,
longitude, and radius) for a number of spots that best
reproduces the observed flux modulations, a χ2 comparison
is made between the observed data and a synthetic light curve.
The model light curve generating engine is wrapped with
several types of Markov Chain Monte Carlo (MCMC)
samplers, including an affine invariant MCMC based on
Foreman-Mackey et al. (2012), which explores the parameter
space to find the lowest χ2, and thus the optimum spot
properties.

The program requires that we choose the number of spots on
the star a priori, and that the spot distribution remains static.
We only analyze a subset of the Kepler data at any one time,
using a “window” to model a timescale over which we do not
expect the spots to evolve. By sliding this window over the full
length of the light curve and running the code many times, we
fit the entire light curve and determine the evolution of the
spots. We emphasize that the MCMC runs are done
independently, generating a unique best-fit spot solution within
each window. This approach of multiple discrete models over
time avoids parameterizing the starspot evolution with analytic
functions as has been done previously (e.g., Kipping 2012),
which in turn allows us to track nonlinear behavior in the size
and position evolution of the spots. We refer the reader to L.
Hebb (2015, in preparation) for a description of the full details
and capabilities of this program, and briefly describe our
specific use below.

We split the GJ 1243 light curve into windows with 5 day
durations, or approximately 8.4 rotation periods at the Kepler
30 minute cadence. The short rotation period, combined with
the slow evolution of spot features seen in Figure 3, resulted in
many stellar rotations for each window, minimizing the effect
of spurious light curve features such as flares or small data
gaps. Each time window was required to contain at least 100
data points, or equivalently ∼3.5 rotation periods. Each
subsequent time window was advanced by 2.5 days, providing
two independent MCMC solutions for each datum. A total of
447 such time windows were used spanning the 14 quarters
of data.

We assumed a fixed flux contrast value of 0.7 for the
starspots, which is consistent with contrast values seen for
spots on active giants, as well as the average contrast of the
solar umbra (e.g., Berdyugina 2005). Note that while resulting
spot sizes are directly dependent on the contrast value used in
our model, the longitude and therefore the differential rotation
is not affected. The default value of 100 annuli was used to
compute the limb darkening. Based on v sin i measurements
from echelle spectroscopy of GJ 1243 (J. P. Wisnieweski 2015,
in preparation) and our measured rotation period, we used a
fixed inclination of 32°.

For each of the 447 windows of time, we modeled the
GJ 1243 light curve using two starspots where each starspot is
defined by fitting three parameters: its latitude, longitude, and
radius. This was the simplest model that was able to reproduce
the observed flux modulations for all time windows to high
accuracy. We note that some time windows were well fit using
a single spot solution, particularly at Time ∼ 800 in Figures 2
and 3, where the flux modulation was dominated by a single
sine-curve-like feature. Models with higher numbers of spots
(three or more) were tested and could easily reproduce the
observed flux modulations, but were not preferred when

properly compared to the two-spot models with fewer free
parameters.
Constraining the latitudes for large starspots is often difficult

when deriving two-dimensional starspot configurations from
one-dimensional light curves. There exists a well known
degeneracy between spot latitude and radius, resulting in
families of solutions for spots at a given longitude but a range
of latitudes and spot sizes that provide equally good fits to the
observed light curve. Therefore, we chose to fix the latitudes
for the two starspots to break this degeneracy in our model
runs. This does not affect our final conclusions because the
differential rotation measurements depend only on the derived
longitudes of the spots. To select latitudes at which to fix the
two spots in our model, we ran our entire light curve modeling
analysis for 1/10 of the time windows, and using five
configurations of starspot latitudes. For each model configura-
tion one spot was fixed at the stellar equator (0°), and one at a
higher latitude toward the inclined pole. The five higher
latitude spot positions tested were (72◦. 8, 55◦. 6, 38◦. 4, 26◦. 9, and
9◦. 8). Note, given the inclination of 32°, spots above ∼58°
would be partially or fully visible during the entire stellar
rotation, and therefore would produce less flux modulation.
The starspot longitudes and sizes were allowed to vary in
configuration.
Each resulting set of MCMC solutions produced comparably

good fits to the light curve, and had the same number of free
parameters. The individual sine-like modulations seen in the
light curve were not required to correspond to the higher or
lower latitude spot in any given model configuration. As a
result, some models would exhibit a “flip” between spot
latitudes for a given feature at nearly the same longitude
between subsequent time windows. This flipping was observed
for the two configurations with higher latitude spots (72◦. 8 and
55◦. 6). For our final analysis we chose the solution set with the
highest latitude configuration that did not exhibit this flipping
in spot latitudes between subsequent time windows. The two
starspots in our analysis were therefore fixed at latitudes of
38◦. 4 and 0°. We note our resulting longitudinal shear results
were insensitive to the latitudes chosen.
The affine invariant sampler based on Foreman-Mackey

et al. (2012) was employed for each time window, with random
starting values for the spot radius and longitude, but fixed
latitudes as described above. For each window of data, the
MCMC was run for 300 steps using 100 walkers, and the “a
scale” parameter was set to 2.0. To carry out these independent
MCMC realizations efficiently in parallel, we used CONDOR
(Litzkow et al. 1988; Thain et al. 2005) to distribute the 447
MCMC explorations across 180 Linux workstation computer
cores. Each window’s MCMC chain was converged after 300
steps, and the starspot configuration that produced the best-fit
(lowest χ2) solution for each time window was adopted. We
note that the phase-folded data within each window had a
scatter about 10 times greater than the typical photometric
uncertainty given in the Kepler data. This was due to errors in
the underlying light curve and limitations of our detrending
algorithm, as well as small amplitude evolution of the starspot
features within each window. The starspot flux modulation
signal was more than 20 times greater than this scatter. Average
reduced χ2 values were ∼2 per time window, assuming a 10
times increase in the photometric uncertainty.
In Figure 4 we show phase-folded light curves for two

representative time windows of data with their best-fit solutions
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overlaid, along with orthographic map projections of the model
stellar surface showing the best-fitting spot configurations. This
map projection demonstrates the inclination of the star as well
as the relatively large size of the starspots. The higher latitude
spot appears at nearly the same phase (longitude) and size,
while the lower latitude spot shrinks in radius and advances in
longitude (lower phase) in the direction of the stellar rotation.

4. QUANTIFYING THE STARSPOT EVOLUTION

Using the best-fit parameters from each stationary, indepen-
dent MCMC model, as in Figure 4, we were able to trace the
sizes and longitudes of two starspots over the entire span of our
Kepler data. In Figure 5 we show the rotational phase

(equivalently the longitude facing the observer) for both
starspots as a function of time. The higher latitude starspot
indicated in Figure 4 (orange) is very stable in Figure 5 in
phase (longitude) with a standard deviation in longitude of
only 4.5% (16°) over the 4 years of data, and traces the dark
band seen in Figure 3 centered at Phase = 0. The amplitude of
this higher latitude spot on the light curve changes slowly over
the data, with a standard deviation of 34% in fractional flux in
Figure 5. We refer to this feature as the “primary starspot.”
The “secondary starspot” (purple), however, evolves

significantly in phase across the stellar surface over time in
Figure 5. This feature corresponds to the lower latitude,
equatorial starspot in Figure 4, and traces the transient
secondary features seen in Figure 3. Between Time ∼ 750

Figure 4. Top: orthographic projections of the model star, with an inclination of 32°, and the best-fit positions for two circular spots for the 5 day time window starting
at BJD—2454833.11567 = 508.1 days (left) and 815.6 (right). The direction of stellar rotation is indicated by the black arrow. Bottom: phase-folded light curve for
the data in the same 5 day time windows, with the best-fit two-spot models overlaid (blue solid line), and the contributions from both the higher latitude (orange
dashed line) and equatorial (purple dashed line) starspots offset for clarity.
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and 900, the two best-fit starspot locations were very close in
phase, and the variance between solutions in subsequent time
steps increased for both the primary and secondary spots. These
correspond to time windows where a one-starspot model would
be preferred.

We manually identified two regions in Figure 5 that
displayed nearly constant linear evolution in the secondary
starspot longitude: Time = 510–630, and Time = 945–1400.
We interpret these to be the signatures of differential rotation,
with secular spot motions in time. Within these time windows
we used a nonlinear least squares first order polynomial fit to
measure the linear slopes. Lines of best fit for these two regions
are shown in Figure 5 as dashed and solid black lines, and had
slopes of −0.000927 and −0.000569, respectively. The
occurrence of these secondary starspots at multiple times
within our data may in fact be due to a single lower latitude
feature lapping the primary starspot, but we note the slopes and
separations in these features in Figure 5 are not consistent with
a single spot at a fixed rate of differential rotation.

The measured slopes were in units of phase day−1, and
corresponded to a rotation shear of t2 0.0058lappDW = =
and 0.0036 rad day−1, using the definition from Küker &
Rüdiger (2008). Note, however, this does not include any
consideration of the starspot latitudes. These slopes can also be

converted to secondary rotation periods using the equation

P
P

m P1
, (1)i

i

0

0
=

-

where mi is the slope of each feature, P0 is the rotation period
used to phase fold the data to make the figure, and Pi is the
resulting rotation period. Note by this definition a negative
slope yields a shorter rotation period.
Differential rotation is generally parameterized (e.g., Henry

et al. 1995) as:

( )P P k1 sin , (2)eq
2 f= -f

where Pf is the rotation period at a given latitude (ϕ), Peq is the
rotation period at the equator, and k eqº DW W governs the
rate of differential rotation as a function of latitude. Our model
results indicate that the period used to phase fold the data in
Figure 5 corresponds to the higher latitude (38◦. 4) starspot, and
assumes the secondary starspot features are on the stellar
equator. Using an average slope from Figure 5 of
m = −0.000748, and the phase-folding period from Section 2.2,
we estimated an equatorial rotation period of P 0.5923336eq =
days via Equation (1). We then solved for the unitless

Figure 5. Top: continuous phased light curve map, as in Figure 3, with the best-fit solutions from our two spot model overlaid. The higher latitude spot shown in
Figure 4 (orange open circles) remains nearly constant in phase, while the secondary lower latitude spot (purple filled circles) evolves significantly. Linear fits to the
phase evolution for the secondary spot are overlaid (black solid and dashed lines), which we interpret as differential rotation. Bottom: fractional flux amplitude of each
starspot as a function of time for the best-fit solutions from our two spot model. Colors are the same as above.
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differential rotation parameter using Equation (2), finding
k = 0.00114, which corresponds to ΔΩ = 0.012 ±
0.002 rad day−1. The uncertainty we quote here is propagated
from the errors in the linear least squares fits in Figure 5.

Assuming the primary spot for GJ 1243 is indeed at a higher
latitude than the faster rotating secondary spots, this behavior is
consistent with solar-like surface differential rotation where the
equator rotates faster than the poles. If the primary and
secondary starspots are well separated in latitude as our model
indicates, such a low value of shear indicates very weak
differential rotation, with the star rotating nearly as a solid
body. For comparison, the Sun’s surface differential rotation is
much stronger, withΔW = 0.055 rad day−1 (Berdyugina 2005).

5. FITTING WITH GAUSSIANS

In the previous two sections we have focused on measuring
starspot evolution using a series of sophisticated stationary
models, and finding the differential rotation rate by comparing
the position of spots in subsequent model realizations. In this
section we explore an alternative method of explicitly
determining the starspot time evolution, and thus the
differential rotation rate, using Gaussian functions.

Rather than modeling the entire light curve directly to infer
the starspot sizes and positions, as in Figure 4, we analyzed the
three-dimensional “surface” shown in Figures 3 and 5, which
traces the flux as a function of both time and rotational phase.
The data were binned in both time and phase (longitude), using
bin sizes of 10 days and 14◦. 4, respectively. To model this flux
map we used two-dimensional bivariate Gaussian distributions
of the form:

( )
( )

t t t l l

l t t l l

F t l A
t l b

( )cos sin

( )sin cos

( , ) exp
( ) ( )

2
, (3)

0 0
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where F t l( , ) is the flux as a function of time t and longitude l,
A is the flux amplitude of the starspot, τ is the lifetime of the
starspot, b is the scale width of the large starspot in longitude,
t0 is the center time of the starspot, l0 is the center longitude of
the starspot, and θ is the slope of the spot evolution in units of
degrees day−1. Here the longitude is a circular coordinate, with
a range between 0° and 360°, and defined to continuously wrap
from 360 back to 0°. This definition enables long-lived
starspots with large rates of differentially rotation to “lap” the
stellar surface multiple times. Each starspot’s evolution is
defined by evaluating Equation (3) over the entire time span of
our data, and the full range in longitude. The entire flux map in
Figure 4 is reproduced by summing the 2D Gaussian functions.
For our Gaussian analysis we used the data spanning from

the beginning of the available Kepler data (Q0) through
Quarter 14 (Time ∼ 1370). This time range was chosen to
focus our analysis on the secondary spot evolution and
differential rotation signal measured above. We discarded data
from Q16 and Q17 data which showed no sign of the secondary
starspot.
We solved for the positions and evolution of four starspots

over the entire duration of the data, using the Python MCMC
sampler emcee from Foreman-Mackey et al. (2012) to explore
parameter space for all four simultaneously. In this four
Gaussian model, we consider the largest spot (also with the
smallest slope in θ) as the primary, and the three secondary
spots as independent spot features, or repeat occurrences of the
secondary spot discussed before. A third occurrence of the
secondary spot feature was needed to account for the small
feature seen around Phase ∼ 0.4 at Time ∼ 100 days in
Figure 3, which was not chosen in our conservative by-eye
selection above. We used rough values for the parameters to
seed emcee with. The initial seeds for the primary spot were
θ = 0, t 8000 = , τ = 1300 days, l 750 = °, and b = 15. The
three secondary spots were all seeded with θ = −0◦. 2 day−1,

Figure 6. Bivariate Gaussian models of starspot evolution in phase and time (open contours), overlaid on the time–phase flux map from Figure 3. A total of four
Gaussians defined by Equation (3) were fit, representing one primary and three secondary starspot features. For visual clarity we have offset the Gaussian that
corresponds to the primary starspot by 1 phase.
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τ = 100 days, and l 2000 = °. The secondary starspot center
times seeds were set to t0 = 200, 530, and 1200.

We then ran emcee with 50 walkers for 2000 steps. The
best-fit model from this parameter space search for the three
secondary starspots is shown in Figure 6. The best-fit slope for
the primary spot was θ = −0◦. 0011 day−1, and for the secondary
spots (in time order) was θ = −0.20, −0.14, and −0◦. 15 day−1.
These secondary spot shear rates corresponded to

t2 lapp = DW = 0.0036, 0.0025, and 0.0027 rad day−1, or an
average of 0.0029 rad day−1, somewhat lower amplitude than
measured from the linear features in Figure 5. Note again this
method does not constrain the latitudes of the starspots, and so
the measurement of shear is only a lower limit on the true
differential rotation rate.

This approach assumes a priori that the starspot evolution in
both time and longitude can be represented by a Gaussian
function, meaning the spots may only evolve linearly in
longitude over time. We note the resulting estimate for the
differential rotation shear rates for the secondary starspots are
very similar to the values determined when fitting many time-
stationary MCMC instances. The Gaussian modeling approach
used flux data that was binned in time and phase, greatly
reducing the number of data points to be fit. This entire MCMC
analysis took only a few minutes to compute using a standard
Linux workstation. We thus propose this to be an efficient
means of estimating the starspot lifetimes and differential
rotation rates in certain cases, which we discuss further in
Section 6 below.

6. DISCUSSION

We have produced two significant results in this work. The
first is the identification of a long-lived starspot, which we
attribute to a higher latitude starspot (possibly due to a spot cap
or group) on the rapidly rotating M dwarf, GJ 1243. The
second is a robust measurement of weak differential rotation
for this star due to a spot closer to the stellar equator. In this
section we provide additional context and discussion of these
results, and their implications for the magnetic field’s surface
topology.

6.1. A Long Lived Starspot

To further illustrate the remarkable stability of the higher
latitude spot on GJ 1243, we retrieved ground-based light
curves from SuperWASP which predated the Kepler mission
by ∼2 years (Butters et al. 2010). This SuperWASP public
archive photometry was phased using the period and ephemeris
we determined from our Kepler light curve. The phase of flux
minimum matches between these two data sets to within 1%,
indicating this large starspot has been stable in longitude for
more than 6 years. The amplitudes of the flux modulations
between Kepler and SuperWASP are only slightly different,
with the median Kepler variation of 2.19% (averaged over all
4 years of data), and for SuperWASP of 2.86%. The Super-
WASP data was taken in the V band, which is more narrow
than the very wide Kepler filter. The V band also is centered at
a shorter wavelength than the Kepler filter, which is weighted
more toward the R band. As a result, we would expect to find
larger flux contrast between cool spots and the stellar
photosphere in the V band than compared to the Kepler filter.
However, since these observations were not concurrent we

cannot rule out small differences in the starspot’s physical size
over time.

6.2. Differential Rotation in Cool Stars

The average starspot shear for GJ 1243 observed in this
paper of 0.0047 rad day−1 corresponds to a differential rotation
rate of ΔΩ = 0.012 ± 0.002 rad day−1 (assuming the spot
configurations used in our models), and is one of only a few
such measurements yet obtained for low-mass, rapidly rotating,
fully convective stars. In Figure 7, we place this measurement
in the context of other existing observations of stellar
differential rotation (Barnes et al. 2005; Morin et al. 2008a)
along with the empirical extrapolation to cool stars from
Reiners (2006) and Collier Cameron (2007), and models from
Küker & Rüdiger (2011). One of the few other objects with a
robust differential rotation measurement in this regime is the
cool, rapidly rotating star, V374 Peg (Morin et al. 2008a).
These authors employ Doppler Imaging, a completely different
technique to our own, to derive a value for the surface
differential rotation of V374 Peg (ΔΩ = 0.0063 ±
0.0004 rad day−1) that is similar to that of GJ 1243 we have
measured. This Doppler Imaging method assumes a solar-like
differential rotation profile as in Equation (2), and simulta-
neously fits for the starspot positions, sizes, and shear rates.
Lurie et al. (2015) have also estimated the starspot shear for
both rapidly rotating components of the M5+M5 binary
GJ 1245AB, using Kepler data and the 2D Gaussian modeling
approach detailed in our Section 5, finding shear rates that are
comparable to GJ 1243 and V374 Peg.
The various methods for constraining differential rotation

each have unique limitations in their sensitivity and degen-
eracies. Photometric phase-tracking methods such as ours,
frequency splitting approaches (Reinhold et al. 2013), as well
as spectroscopic line broadening techniques (i.e., the Fourier
Transform Method; Reiners & Schmitt 2003) have been
considered as only providing lower limits on the true

Figure 7. Average starspot shear from the two linear fits to the MCMC light
curve models in Figure 5, assuming the primary spot was at a latitude of 38◦. 4
and secondary spot at the equator (blue diamond). The blue bar extends to the
minimum possible amplitude of differential rotation for GJ 1243, assuming the
primary and secondary spots are at the pole and equator, respectively. For
comparison, the Collier Cameron (2007) observed fit for cool stars (black
dashed line), theoretical prediction from Küker & Rüdiger (2011; red dot-dash
and blue solid lines), individual stars from Barnes et al. (2005; black circles),
and the estimated shear rate for V374 Peg determined using doppler imaging
from Morin et al. (2008a; purple filled circle) are shown.
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differential rotation rate, due to a lack of constraint on the
starspot latitudes (Barnes et al. 2005). Statistical corrections for
this latitudinal uncertainty have been developed (Hall &
Henry 1994), and our models of GJ 1243 provide a weak
constraint on the spot latitudes. Together, these varied
observations indicate that rapidly rotating, mid-M-dwarf stars
exhibit differential rotation that is significantly weaker than on
the Sun (0.055 rad day−1) by up to an order of magnitude.

These observational results of low ΔΩ values support recent
theoretical work in this area. Mean field theory models predict
that for stars at a fixed temperature surface differential rotation
rates decrease with faster rotation (shorter periods), down to
periods of a few days (Küker & Rüdiger 2005). In addition, the
total amplitude of the differential rotation decreases with
decreasing temperature, as models indicate lower mass main
sequence stars (Teff < 6000 K) should exhibit lower amounts of
surface differential rotation than hotter stars at a fixed rotation
period (Küker & Rüdiger 2011).

Dipolar dynamos with strong magnetic fields and quenched
differential rotation have been reported in global dynamo
models of rapidly rotating low-mass stars (e.g., Gastine
et al. 2013). Furthermore, recent global dynamo modeling
efforts have also been successful in producing polar starspots
self consistently (Yadav et al. 2015) Furthermore, in hydro-
dynamic simulations of rotating, non-magnetic, solar-type
stars, Browning (2008) found that convection in the outer
zone of the star redistributes angular momentum quickly giving
rise to solar-like differential rotation. However, when strong
magnetic fields are introduced, the field lines act to reduce the
differential rotation by linking together individual regions of
the stellar interior. As the strength of the magnetic field is
increased, as is typically seen for more rapidly rotating stars,
the differential rotation is suppressed to almost negligible
values.

The observations from Lurie et al. (2015) also support this
connection between rotation, magnetic field strength, and
suppressed differential rotation. For the M5+M5 binary system
GJ 1245AB, the more rapidly rotating component (GJ 1245A,
P = 0.26 days) has a slightly higher total chromospheric Hα
emission flux, and significantly less phase evolution of its
starspot modulations compared with GJ 1245 B,
(P = 0.71 days).

6.3. Magnetic Field Topology

Dynamo models and observations of stars like GJ 1243 are
in agreement that for rapidly rotating, low-mass stars, the
magnetic field strength is increased and surface differential
rotation is suppressed. The detailed surface topology of the
magnetic field is less certain. The convective dynamo models
from Browning (2008), for example, indicate that rapid
rotation produces strong axisymmetric magnetic fields. Earlier
models of convective envelopes (Dobler et al. 2006) also show
net axisymmetric magnetic fields. Other models of fully
convective stars, however, have produced fully non-axisym-
metric fields at the surface (Küker & Rüdiger 2005; Chabrier &
Küker 2006).

The smooth rotational flux modulation observed is due to a
local feature on the stellar surface. The magnetic activity from
this star as traced by flares in Kepler data has also been well
studied (Davenport et al. 2014; Hawley et al. 2014). No
correlation between rotational phase (or equivalently long-
itude) and the occurrence rate or energy emitted from flares has

been found. The star may be uniformly covered by many
smaller active regions and spots that would not create observed
modulations in the light curve. The flares would be a result of
these small scale multipolar magnetic field structures. Simi-
larly, the stellar pole may be entirely covered by a polar spot
“cap,” resulting from strong poloidal magnetic flux geometry
due to the rapid stellar rotation. This poloidal component of the
magnetic field could also be slightly misaligned from the stellar
rotation axis, as seen in other convective stellar and planetary
dynamos (e.g., Christensen et al. 2009; Hull et al. 2013),
resulting in the observed light curve asymmetries.
As we noted in Section 2, the Rossby number for GJ 1243 is

R 0.008o » . According to the ZDI observations of M dwarfs
aggregated in Gastine et al. (2013), for stars with R 0.1o <
both dipole and multipole fields are possible. In this low
Rossby number regime, they also find surface differential
rotation should be stronger when the magnetic field is
multipolar. However, we find for GJ 1243 a very low rate of
differential rotation, and large, long-lived starspot modulations.
As a result, in this context we predict a highly organized and
stable dipolar magnetic field geometry. This is in agreement
with the ZDI observations of the similar star V374 Peg, which
has a large scale dipolar field and long-lived starspots (Morin
et al. 2008a).

7. SUMMARY

In this paper, we have presented a classic approach of phase
tracking starspots in light curves, made new by the exquisite
photometric monitoring from Kepler. By tracing the phase
evolution for two starspot regions on GJ 1243 we have found
the smallest amplitude of differential rotation rate ever robustly
measured for a cool star. This phase-tracking technique is
similar to Henry et al. (1995), and is sensitive to a comparable
amplitude differential rotation signal to Morin et al. (2008a).
The large starspots, or starspot groups, on GJ 1243 are very
long-lived, with the primary high-latitude spot found to be
constantly aligned in phase for over 6 years. The secondary
starspot features evolve on timescales of hundreds of days in
both phase and amplitude.
There remain many challenges in modeling the starspots

using broadband light curves alone. For example, we have
almost no constraint on the actual latitudes of the spots.
Modeling starspots on stars with transiting exoplanets (e.g.,
Sanchis-Ojeda et al. 2013) may help break many of these
degeneracies. As most transiting systems in the Kepler data are
around G dwarf stars, more M dwarf systems like Kepler186
(Quintana et al. 2014) are needed to better understand the
detailed starspot characteristics of stars across the main
sequence.
Both the light curve modeling MCMC and 2D Gaussian

phase-tracking techniques used to measure surface differential
rotation in this work are best suited for tracking long-lived
spots on rapidly rotating stars, as in the GJ 1243 system where
we are able to average over hundreds of stellar rotation periods
during a starspot’s lifetime. We believe the light curve
modeling approach provides the most robust estimates for
starspot properties, but note the 2D Gaussian approach is orders
of magnitude faster to execute. This methodology could be
applied to hundreds of rapidly rotating active stars in the Kepler
data set for which rotation periods are already known (e.g., see
Reinhold et al. 2013; McQuillan et al. 2014). There are ∼20
other stars in the Kepler data with M dwarf colors and
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estimated rotation periods shorter than 1 day (McQuillan
et al. 2013). A cursory look at these light curves reveals many
with dramatic flare activity and sinusoidal starspot modula-
tions, as found on GJ 1243 and GJ 1245AB. The phase versus
time diagrams (as in our Figure 5 for GJ 1243) for these other
rapidly rotating stars show a diverse set of morphologies,
ranging from even more stable spots than on GJ 1243, to stars
with faster shear rates and shorter spot lifetimes.

Finally, we have introduced an efficient technique for
empirically tracking starspot evolution in the phase versus
time flux map, by fitting bivariate Gaussians to model the spot
motion and evolution. Studying the phase-evolution of the
starspots with Kepler for single field stars appears to be feasible
for stars with fast rotation periods and long spot lifetimes. The
Gaussian-fitting method presented here has already been
applied to the Kepler data for the active M5+M5 binary
system, GJ 1245 AB (Lurie et al. 2015). We have pointed out
many other rapidly rotating low-mass stars in the Kepler
archive that may be studied with this technique, and hope this
work will be the beginning of a larger observational under-
standing of surface differential rotation in cool stars.
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