619 research outputs found

    Hydrodynamical Non-radiative Accretion Flows in Two-Dimensions

    Get PDF
    Two-dimensional (axially symmetric) numerical hydrodynamical calculations of accretion flows which cannot cool through emission of radiation are presented. The calculations begin from an equilibrium configuration consisting of a thick torus with constant specific angular momentum. Accretion is induced by the addition of a small anomalous azimuthal shear stress which is characterized by a function \nu. We study the flows generated as the amplitude and form of \nu are varied. A spherical polar grid which spans more than two orders of magnitude in radius is used to resolve the flow over a wide range of spatial scales. We find that convection in the inner regions produces significant outward mass motions that carry away both the energy liberated by, and a large fraction of the mass participating in, the accretion flow. Although the instantaneous structure of the flow is complex and dominated by convective eddies, long time averages of the dynamical variables show remarkable correspondence to certain steady-state solutions. Near the equatorial plane, the radial profiles of the time-averaged variables are power-laws with an index that depends on the radial scaling of the shear stress. We find that regardless of the adiabatic index of the gas, or the form or magnitude of the shear stress, the mass inflow rate is a strongly increasing function of radius, and is everywhere nearly exactly balanced by mass outflow. The net mass accretion rate through the disc is only a fraction of the rate at which mass is supplied to the inflow at large radii, and is given by the local, viscous accretion rate associated with the flow properties near the central object.Comment: 33 pages, 12 figures, accepted by MNRA

    A Magnetohydrodynamic Nonradiative Accretion Flow in Three Dimensions

    Get PDF
    We present a global magnetohydrodynamic (MHD) three dimensional simulation of a nonradiative accretion flow originating in a pressure supported torus. The evolution is controlled by the magnetorotational instability which produces turbulence. The flow forms a nearly Keplerian disk. The total pressure scale height in this disk is comparable to the vertical size of the initial torus. Gas pressure dominates only near the equator; magnetic pressure is more important in the surrounding atmosphere. A magnetically dominated bound outflow is driven from the disk. The accretion rate through the disk exceeds the final rate into the hole, and a hot torus forms inside 10 r_g. Hot gas, pushed up against the centrifugal barrier and confined by magnetic pressure, is ejected in a narrow, unbound, conical outflow. The dynamics are controlled by magnetic turbulence, not thermal convection, and a hydrodynamic alpha model is inadequate to describe the flow. The limitations of two dimensional MHD simulations are also discussed.Comment: 5 pages, 2 figures, submitted to ApJ Letters. For web version and mpeg animations see http://www.astro.virginia.edu/~jh8h/nraf

    The Effect of Resistivity on the Nonlinear Stage of the Magnetorotational Instability in Accretion Disks

    Full text link
    We present three-dimensional magnetohydrodynamic simulations of the nonlinear evolution of the magnetorotational instability (MRI) with a non-zero Ohmic resistivity. The properties of the saturated state depend on the initial magnetic field configuration. In simulations with an initial uniform vertical field, the MRI is able to support angular momentum transport even for large resistivities through the quasi-periodic generation of axisymmetric radial channel solutions rather than through the maintenance of anisotropic turbulence. Simulations with zero net flux show that the angular momentum transport and the amplitude of magnetic energy after saturation are significantly reduced by finite resistivity, even at levels where the linear modes are only slightly affected. This occurs at magnetic Reynolds numbers expected in low, cool states of dwarf novae, these results suggest that finite resistivity may account for the low and high angular momentum transport rates inferred for these systems.Comment: 8 figures, accepted for publication in Ap

    Non-detection of Contamination by Stellar Activity in the Spitzer Transit Light Curves of TRAPPIST-1

    Get PDF
    We apply the transit light curve self-contamination technique of Morris et al. (2018) to search for the effect of stellar activity on the transits of the ultracool dwarf TRAPPIST-1 with 2018 Spitzer photometry. The self-contamination method fits the transit light curves of planets orbiting spotted stars, allowing the host star to be a source of contaminating positive or negative flux which influences the transit depths but not the ingress/egress durations. We find that none of the planets show statistically significant evidence for self-contamination by bright or dark regions of the stellar photosphere. However, we show that small-scale magnetic activity, analogous in size to the smallest sunspots, could still be lurking in the transit photometry undetected.Comment: Accepted for publication in ApJ

    Chromospheric Activity of HAT-P-11: an Unusually Active Planet-Hosting K Star

    Get PDF
    Kepler photometry of the hot Neptune host star HAT-P-11 suggests that its spot latitude distribution is comparable to the Sun's near solar maximum. We search for evidence of an activity cycle in the CaII H & K chromospheric emission SS-index with archival Keck/HIRES spectra and observations from the echelle spectrograph on the ARC 3.5 m Telescope at APO. The chromospheric emission of HAT-P-11 is consistent with a 10\gtrsim 10 year activity cycle, which plateaued near maximum during the Kepler mission. In the cycle that we observed, the star seemed to spend more time near active maximum than minimum. We compare the logRHK\log R^\prime_{HK} normalized chromospheric emission index of HAT-P-11 with other stars. HAT-P-11 has unusually strong chromospheric emission compared to planet-hosting stars of similar effective temperature and rotation period, perhaps due to tides raised by its planet.Comment: 16 pages, 8 figures; accepted to the Astrophysical Journa

    Nonlinear Evolution of the Magnetothermal Instability in Two Dimensions

    Full text link
    In weakly magnetized, dilute plasmas in which thermal conduction along magnetic field lines is important, the usual convective stability criterion is modified. Instead of depending on entropy gradients, instability occurs for small wavenumbers when (dP/dz)(dln T/dz) > 0, which we refer to as the Balbus criterion. We refer to the convective instability that results in this regime as the magnetothermal instability (MTI). We use numerical MHD simulations which include anisotropic electron heat conduction to follow the growth and saturation of the MTI in two-dimensional, plane parallel atmospheres that are unstable according to the Balbus criterion. The linear growth rates measured in the simulations agree with the weak field dispersion relation. We investigate the effect of strong fields and isotropic conduction on the linear properties and nonlinear regime of the MTI. In the nonlinear regime, the instability saturates and convection decays away, when the atmosphere becomes isothermal. Sustained convective turbulence can be driven if there is a fixed temperature difference between the top and bottom edges of the simulation domain, and if isotropic conduction is used to create convectively stable layers that prevent the formation of unresolved, thermal boundary layers. The largest component of the time-averaged heat flux is due to advective motions. These results have implications for a variety of astrophysical systems, such as the temperature profile of hot gas in galaxy clusters, and the structure of radiatively inefficient accretion flows.Comment: 37 pages, 17 figures, accepted for publication in ApJ Corrected sign typo in instability criterio

    Social Competence Treatment after Traumatic Brain Injury: A Multicenter, Randomized, Controlled Trial of Interactive Group Treatment versus Non-Interactive Treatment

    Get PDF
    Objective To evaluate the effectiveness of a replicable group treatment program for improving social competence after traumatic brain injury (TBI). Design Multicenter randomized controlled trial comparing two methods of conducting a social competency skills program, an interactive group format versus a classroom lecture. Setting Community and Veteran rehabilitation centers. Participants 179 civilian, military, and veteran adults with TBI and social competence difficulties, at least 6 months post-injury. Experimental Intervention Thirteen weekly group interactive sessions (1.5 hours) with structured and facilitated group interactions to improve social competence. Alternative (Control) Intervention Thirteen traditional classroom sessions using the same curriculum with brief supplemental individual sessions but without structured group interaction. Primary Outcome Measure Profile of Pragmatic Impairment in Communication (PPIC), an objective behavioral rating of social communication impairments following TBI. Secondary Outcomes LaTrobe Communication Questionnaire (LCQ), Goal Attainment Scale (GAS), Satisfaction with Life Scale (SWLS), Post-Traumatic Stress Disorder Checklist – (PCL-C), Brief Symptom Inventory 18 (BSI-18), Scale of Perceived Social Self Efficacy (PSSE). Results Social competence goals (GAS) were achieved and maintained for most participants regardless of treatment method. Significant improvements in the primary outcome (PPIC) and two of the secondary outcomes (LCQ and BSI) were seen immediately post-treatment and at 3 months post-treatment in the AT arm only, however these improvements were not significantly different between the GIST and AT arms. Similar trends were observed for PSSE and PCL-C. Conclusions Social competence skills improved for persons with TBI in both treatment conditions. The group interactive format was not found to be a superior method of treatment delivery in this study
    corecore