75 research outputs found

    Low-Dose Fulvestrant Maintained Long-Term Complete Remission after Poor Response to Previous Endocrine Therapies in a Patient with Advanced Breast Cancer

    Get PDF
    We report a case of long-term (9 years) response to 4th-line endocrine treatment with fulvestrant given for advanced breast cancer after no or poor response to prior endocrine therapies. Complete remission was achieved with full dose and maintained even after dose reduction due to unanticipated intensity of mucosal toxicity. Complete remission was temporarily lost after fulvestrant was tentatively withdrawn (63 months after treatment start), but was re-achieved after renewal of half-dose treatment and last reconfirmed 90 months after treatment start. The pharmacokinetic profile provides evidence to hypothesize a unique sensitivity to fulvestrant in this patient which might explain both: toxicity and extraordinary efficacy

    Clinical benefit of fulvestrant in postmenopausal women with advanced breast cancer and primary or acquired resistance to aromatase inhibitors: final results of phase II Swiss Group for Clinical Cancer Research Trial (SAKK 21/00)

    Get PDF
    Background: The aim of this study was to evaluate the efficacy and tolerability of fulvestrant, an estrogen receptor antagonist, in postmenopausal women with hormone-responsive tumors progressing after aromatase inhibitor (AI) treatment. Patients and methods: This is a phase II, open, multicenter, noncomparative study. Two patient groups were prospectively considered: group A (n = 70) with AI-responsive disease and group B (n = 20) with AI-resistant disease. Fulvestrant 250 mg was administered as intramuscular injection every 28 (±3) days. Results: All patients were pretreated with AI and 84% also with tamoxifen or toremifene; 67% had bone metastases and 45% liver metastases. Fulvestrant administration was well tolerated and yielded a clinical benefit (CB; defined as objective response or stable disease [SD] for ≥24 weeks) in 28% (90% confidence interval [CI] 19% to 39%) of patients in group A and 37% (90% CI 19% to 58%) of patients in group B. Median time to progression (TTP) was 3.6 (95% CI 3.0 to 4.8) months in group A and 3.4 (95% CI 2.5 to 6.7) months in group B. Conclusions: Overall, 30% of patients who had progressed following prior AI treatment gained CB with fulvestrant, thereby delaying indication to start chemotherapy. Prior response to an AI did not appear to be predictive for benefit with fulvestran

    Bone fractures among postmenopausal patients with endocrine-responsive early breast cancer treated with 5 years of letrozole or tamoxifen in the BIG 1-98 trial

    Get PDF
    Background: To compare the incidence and timing of bone fractures in postmenopausal women treated with 5 years of adjuvant tamoxifen or letrozole for endocrine-responsive early breast cancer in the Breast International Group (BIG) 1-98 trial. Methods: We evaluated 4895 patients allocated to 5 years of letrozole or tamoxifen in the BIG 1-98 trial who received at least some study medication (median follow-up 60.3 months). Bone fracture information (grade, cause, site) was collected every 6 months during trial treatment. Results: The incidence of bone fractures was higher among patients treated with letrozole [228 of 2448 women (9.3%)] versus tamoxifen [160 of 2447 women (6.5%)]. The wrist was the most common site of fracture in both treatment groups. Statistically significant risk factors for bone fractures during treatment included age, smoking history, osteoporosis at baseline, previous bone fracture, and previous hormone replacement therapy. Conclusions: Consistent with other trials comparing aromatase inhibitors to tamoxifen, letrozole was associated with an increase in bone fractures. Benefits of superior disease control associated with letrozole and lower incidence of fracture with tamoxifen should be considered with the risk profile for individual patient

    First-in human, phase 1, dose-escalation pharmacokinetic and pharmacodynamic study of the oral dual PI3K and mTORC1/2 inhibitor PQR309 in patients with advanced solid tumors (SAKK 67/13)

    Get PDF
    BACKGROUND: PQR309 is an orally bioavailable, balanced pan-phosphatidylinositol-3-kinase (PI3K), mammalian target of rapamycin (mTOR) C1 and mTORC2 inhibitor. PATIENTS AND METHODS: This is an accelerated titration, 3 + 3 dose-escalation, open-label phase I trial of continuous once-daily (OD) PQR309 administration to evaluate the safety, pharmacokinetics (PK) and pharmacodynamics in patients with advanced solid tumours. Primary objectives were to determine the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D). RESULTS: Twenty-eight patients were included in six dosing cohorts and treated at a daily PQR309 dose ranging from 10 to 150 mg. Common adverse events (AEs; ≥30% patients) included fatigue, hyperglycaemia, nausea, diarrhoea, constipation, rash, anorexia and vomiting. Grade (G) 3 or 4 drug-related AEs were seen in 13 (46%) and three (11%) patients, respectively. Dose-limiting toxicity (DLT) was observed in two patients at 100 mg OD (>14-d interruption in PQR309 due to G3 rash, G2 hyperbilirubinaemia, G4 suicide attempt; dose reduction due to G3 fatigue, G2 diarrhoea, G4 transaminitis) and one patient at 80 mg (G3 hyperglycaemia >7 d). PK shows fast absorption (Tmax 1-2 h) and dose proportionality for Cmax and area under the curve. A partial response in a patient with metastatic thymus cancer, 24% disease volume reduction in a patient with sinonasal cancer and stable disease for more than 16 weeks in a patient with clear cell Bartholin's gland cancer were observed. CONCLUSION: The MTD and RP2D of PQR309 is 80 mg of orally OD. PK is dose-proportional. PD shows PI3K pathway phosphoprotein downregulation in paired tumour biopsies. Clinical activity was observed in patients with and without PI3K pathway dysregulation. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov # NCT01940133

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    Mapping the Hsp90 Genetic Interaction Network in Candida albicans Reveals Environmental Contingency and Rewired Circuitry

    Get PDF
    The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with ∼10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time

    Modeling Signal Propagation Mechanisms and Ligand-Based Conformational Dynamics of the Hsp90 Molecular Chaperone Full-Length Dimer

    Get PDF
    Hsp90 is a molecular chaperone essential for protein folding and activation in normal homeostasis and stress response. ATP binding and hydrolysis facilitate Hsp90 conformational changes required for client activation. Hsp90 plays an important role in disease states, particularly in cancer, where chaperoning of the mutated and overexpressed oncoproteins is important for function. Recent studies have illuminated mechanisms related to the chaperone function. However, an atomic resolution view of Hsp90 conformational dynamics, determined by the presence of different binding partners, is critical to define communication pathways between remote residues in different domains intimately affecting the chaperone cycle. Here, we present a computational analysis of signal propagation and long-range communication pathways in Hsp90. We carried out molecular dynamics simulations of the full-length Hsp90 dimer, combined with essential dynamics, correlation analysis, and a signal propagation model. All-atom MD simulations with timescales of 70 ns have been performed for complexes with the natural substrates ATP and ADP and for the unliganded dimer. We elucidate the mechanisms of signal propagation and determine “hot spots” involved in interdomain communication pathways from the nucleotide-binding site to the C-terminal domain interface. A comprehensive computational analysis of the Hsp90 communication pathways and dynamics at atomic resolution has revealed the role of the nucleotide in effecting conformational changes, elucidating the mechanisms of signal propagation. Functionally important residues and secondary structure elements emerge as effective mediators of communication between the nucleotide-binding site and the C-terminal interface. Furthermore, we show that specific interdomain signal propagation pathways may be activated as a function of the ligand. Our results support a “conformational selection model” of the Hsp90 mechanism, whereby the protein may exist in a dynamic equilibrium between different conformational states available on the energy landscape and binding of a specific partner can bias the equilibrium toward functionally relevant complexes

    Probing Molecular Mechanisms of the Hsp90 Chaperone: Biophysical Modeling Identifies Key Regulators of Functional Dynamics

    Get PDF
    Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based “conformational selection” of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters may be a rather general functional requirement encoded across molecular chaperones. The obtained insights may be useful in guiding discovery of allosteric Hsp90 inhibitors targeting protein interfaces with co-chaperones and protein binding clients

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes

    Full text link
    corecore