36 research outputs found

    Bridging the gap between the Jaynes-Cummings and Rabi models using an intermediate rotating wave approximation

    Get PDF
    We present a novel approach called the intermediate rotating wave approximation (IRWA), which employs a time-averaging method to encapsulate the dynamics of light-matter interaction from strong to ultrastrong coupling regime. In contrast to the ordinary rotating wave approximation, this method addresses the co-rotating and counter-rotating terms separately to trace their physical consequences individually, and thus establishes the continuity between the Jaynes-Cummings model and the quantum Rabi model. We investigate IRWA in near resonance and large detuning cases. Our IRWA not only agrees well with both models in their respective coupling strengths, but also offers a good explanation for their differences

    Continuous Variable Optimisation of Quantum Randomness and Probabilistic Linear Amplification

    Get PDF
    In the past decade, quantum communication protocols based on continuous variables (CV) has seen considerable development in both theoretical and experimental aspects. Nonetheless, challenges remain in both the practical security and the operating range for CV systems, before such systems may be used extensively. In this thesis, we present the optimisation of experimental parameters for secure randomness generation and propose a non-deterministic approach to enhance amplification of CV quantum state. The first part of this thesis examines the security of quantum devices: in particular, we investigate quantum random number generators (QRNG) and quantum key distribution (QKD) schemes. In a realistic scenario, the output of a quantum random number generator is inevitably tainted by classical technical noise, which potentially compromises the security of such a device. To safeguard against this, we propose and experimentally demonstrate an approach that produces side-information independent randomness. We present a method for maximising such randomness contained in a number sequence generated from a given quantum-to-classical-noise ratio. The detected photocurrent in our experiment is shown to have a real-time random-number generation rate of 14 (Mbit/s)/MHz. Next, we study the one-sided device-independent (1sDI) quantum key distribution scheme in the context of continuous variables. By exploiting recently proven entropic uncertainty relations, one may bound the information leaked to an eavesdropper. We use such a bound to further derive the secret key rate, that depends only upon the conditional Shannon entropies accessible to Alice and Bob, the two honest communicating parties. We identify and experimentally demonstrate such a protocol, using only coherent states as the resource. We measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 3.5 km of fibre transmission. The second part of this thesis concerns the improvement in the transmission of a quantum state. We study two approximate implementations of a probabilistic noiseless linear amplifier (NLA): a physical implementation that truncates the working space of the NLA or a measurement-based implementation that realises the truncation by a bounded postselection filter. We do this by conducting a full analysis on the measurement-based NLA (MB-NLA), making explicit the relationship between its various operating parameters, such as amplification gain and the cut-off of operating domain. We compare it with its physical counterpart in terms of the Husimi Q-distribution and their probability of success. We took our investigations further by combining a probabilistic NLA with an ideal deterministic linear amplifier (DLA). In particular, we show that when NLA gain is strictly lesser than the DLA gain, this combination can be realised by integrating an MB-NLA in an optical DLA setup. This results in a hybrid device which we refer to as the heralded hybrid quantum amplifier. A quantum cloning machine based on this hybrid amplifier is constructed through an amplify-then-split method. We perform probabilistic cloning of arbitrary coherent states, and demonstrate the production of up to five clones, with the fidelity of each clone clearly exceeding the corresponding no-cloning limit

    Overarching framework between Gaussian quantum discord and Gaussian quantum illumination

    Full text link
    We cast the problem of illuminating an object in a noisy environment into a communication protocol. A probe is sent into the environment, and the presence or absence of the object constitutes a signal encoded on the probe. The probe is then measured to decode the signal. We calculate the Holevo information and bounds to the accessible information between the encoded and received signal with two different Gaussian probes---an Einstein-Podolsky-Rosen (EPR) state and a coherent state. We also evaluate the Gaussian discord consumed during the encoding process with the EPR probe. We find that the Holevo quantum advantage, defined as the difference between the Holevo information obtained from the EPR and coherent state probes, is approximately equal to the discord consumed. These quantities become exact in the typical illumination regime of low object reflectivity and low probe energy. Hence we show that discord is the resource responsible for the quantum advantage in Gaussian quantum illumination.Comment: 12 pages, 8 figure

    Real-Time Source Independent Quantum Random Number Generator with Squeezed States

    Get PDF
    Random numbers are a fundamental ingredient for many applications including simulation, modelling and cryptography. Sound random numbers should be independent and uniformly distributed. Moreover, for cryptographic applications they should also be unpredictable. We demonstrate a real-time self-testing source independent quantum random number generator (QRNG) that uses squeezed light as source. We generate secure random numbers by measuring the quadratures of the electromagnetic field without making any assumptions on the source; only the detection device is trusted. We use a homodyne detection to alternatively measure the Q and P conjugate quadratures of our source. Using the entropic uncertainty relation, measurements on P allow us to estimate a bound on the min-entropy of Q conditioned on any classical or quantum side information that a malicious eavesdropper may detain. This bound gives the minimum number of secure bits we can extract from the Q measurement. We discuss the performance of different estimators for this bound. We operate this QRNG with a squeezed state and we compare its performance with a QRNG using thermal states. The real-time bit rate was 8.2 kb/s when using the squeezed source and between 5.2-7.2 kb/s when the thermal state source was used.Comment: 11 pages, 9 figure

    Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution

    Get PDF
    Nonlocal correlations, a longstanding foundational topic in quantum information, have recently found application as a resource for cryptographic tasks where not all devices are trusted, for example in settings with a highly secure central hub, such as a bank or government department, and less secure satellite stations which are inherently more vulnerable to hardware "hacking" attacks. The asymmetric phenomena of Einstein-Podolsky-Rosen steering plays a key role in one-sided device-independent quantum key distribution (1sDI-QKD) protocols. In the context of continuous-variable (CV) QKD schemes utilizing Gaussian states and measurements, we identify all protocols that can be 1sDI and their maximum loss tolerance. Surprisingly, this includes a protocol that uses only coherent states. We also establish a direct link between the relevant EPR steering inequality and the secret key rate, further strengthening the relationship between these asymmetric notions of nonlocality and device independence. We experimentally implement both entanglement-based and coherent-state protocols, and measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 7.5 km and 3.5 km of optical fiber transmission respectively. We also engage in detailed modelling to understand the limits of our current experiment and the potential for further improvements. The new protocols we uncover apply the cheap and efficient hardware of CVQKD systems in a significantly more secure setting.Comment: Addition of experimental results and (several) new author
    corecore