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Abstract

We present a novel approach called the intermediate rotating wave approximation (IRWA), which employs a

time-averaging method to encapsulate the dynamics of light-matter interaction from strong to ultrastrong coupling

regime. In contrast to the ordinary rotating wave approximation, this method addresses the co-rotating and

counter-rotating terms separately to trace their physical consequences individually, and thus establishes the continuity

between the Jaynes-Cummings model and the quantum Rabi model. We investigate IRWA in near resonance and large

detuning cases. Our IRWA not only agrees well with both models in their respective coupling strengths, but also offers

a good explanation for their differences.
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1. Introduction

The quantum Rabi model (QRM), which describes

the interaction between a qubit and a quantized

harmonic oscillator (bosonic mode) [1], is written as

HRabi =
1

2
�ωaσz + �ωra†a + �gσx(a + a†), (1)

where a (a†) represents the bosonic annihilation

(creation) operator of the electromagnetic field mode,

ωr is the corresponding frequency; ωa is the transition

frequency of the qubit, σi (i = x, y, z) are the

corresponding Pauli operators; and g is the dipole

interaction strength. The QRM has been widely applied

in modern physics, ranging from condensed-matter

physics [2], atomic physics [3] to quantum optics

[4], such as cavity QED [5] and circuit QED [6, 7]

systems. Given its great importance, the QRM has

been studied extensively using various methods [8,

9]. Despite all those studies, the exact solution of

QRM was only obtained by Braak recently [10]. This

analytical solution, however, is in the form of composite

transcendental function defined in power series. The

search for simpler analytical solution of generalized

QRM with more physical insights thus continued [11,

12]. For example, the Bogoliubov-type transformation

[13, 14, 15] is used to diagonalize the Hamiltonian to

gain solutions and properties of the model [16, 17].

The quantum Rabi model can be further simplified

into the renowned Jaynes-Cummings model (JCM)

[18] by rotating wave approximation (RWA) provided

that the coupling strength is sufficiently weak (g �
min{ωr, ωa}), and the detuning is small enough (|ωa −
ωr | � ωr + ωa). In the interaction picture, the rotating

terms σ+a and σ−a† oscillate slowly with phase factor

of exp[±i(ωa−ωr)t], whereas the two “counter-rotating”

terms σ+a† and σ−a oscillate rapidly with phase factor

of exp[±i(ωr + ωa)t]. Together with weak coupling

condition, one can separate the time scales and discard

the fast-oscillating terms [4, 19, p.354], thus obtaining

the Jaynes-Cummings Hamiltonian

HJC =
1

2
�ωaσz + �ωra†a + �g(σ+a + σ−a†), (2)

which has simple analytical solutions.

Enhancement and tunability of light-matter

interaction is crucial not only for fundamental studies

of cavity/circuit QED but also for their applications
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in quantum information processing. Three different

coupling regimes can be defined based on the basic

frequency scales of the system. In the weak coupling

regime (g � {γ, κ}, κ and γ being the loss rate of the

photon and the emitters’ excitation), the discrete density

of photonic states modifies the radiative lifetime of the

quantum emitters (Purcell effect) [20]. Strong coupling

regime is achieved when {γ, κ} � g � min{ωr, ωa}
[21, p.432], such that quantum emitters absorb and

spontaneously re-emit a photon many times before

dissipation becomes effective. This strong coupling

regime has been investigated in various systems,

ranging from atoms [5], through quantum dots (QD)

[22] to Cooper-pair boxes [6]. In these conventional

QED experiments, the system is operating in either

weak coupling regime or strong coupling regime.

Therefore, the RWA, which leads to JCM from

QRM, is very well justified, and the JCM captures a

wealth of physical phenomena in conventional QED

systems comprehensively. With recent advances of

new technologies, the ultrastrong coupling regime has

become experimentally accessible in semiconductor

[23, 24, 25] and superconducting systems [7, 26].

In this so-called ultrastrong coupling regime [27],

the coupling strength becomes comparable to the

frequency of the resonator, g/ωr � 0.1. Therefore,

the routinely invoked RWA and the JCM break down,

and the systems dynamics become governed by the

QRM. This novel unexplored physics has opened up

new research interest in applications of the QRM.

Since then, considerable progress has been made and

fascinating phenomenon have been predicted, such as

photon blockade [28], nonclassical state generation

[29], breakdown of the standard master equation [30],

and ultrafast two-qubit quantum gate operations [31].

One interesting observation is that the co-rotating

terms and counter-rotating terms in the QRM affect

the system in a different manner depending on the

coupling regime. In light of this, one could gain better

physical intuition of the continuity between the JCM

and the QRM by treating the coupling strength of the

co-rotating terms and counter-rotating terms separately

[32, 33]. In this paper, we seek to understand the

emergence of the counter-rotating terms from the JCM

to the QRM by resorting to the time-averaging method

[4, p. 353], which also helps us to keep track of the

time scale involved in the dynamics. With this method,

we deploy a form of approximation, which we term

as intermediate RWA (IRWA). The basic idea of this

approximation is that, instead of going to the limit of

either RWA or non-RWA, we use the time-averaged

coupling strength in the interaction Hamiltonian. We

present the general formalism and apply the IRWA into

two specific situations: the near resonance case and the

dispersive (large detuning) case.

The paper is organized as follows. In Sec. 2, we first

give a brief review of the time-averaging approach and

introduce the IRWA. In Sec. 3, the IRWA is used to

study the energy levels of the system by perturbation

theory in the near resonance case with increasing

coupling strength. In Sec. 4, the dynamics of the system

is investigated in the dispersive case with IRWA for both

single- and multi-qubit case. We summarize our results

in Sec. 5.

2. Time-averaging and intermediate RWA

2.1. Time-averaging function

The slow and fast time scales in a dynamical system

can be separated explicitly by means of a temporal

filtering operation. The time average of a function is

defined by the convolution

f (t) =
∫ ∞

−∞
dt′�(t−t′) f (t′) =

∫ ∞

−∞
dt′�(t′) f (t+t′), (3)

where the averaging function �(t) is positive, �(t) ≥ 0,

even, �(t) = �(−t), and normalized,
∫ ∞
−∞ dt�(t) = 1

[4, p.353]. The weighting function �(t) has a temporal

width τ =
[∫ ∞
−∞ dt�(t) t2

]1/2
< ∞, which washes out

oscillation with period smaller than τ.

A simple example of such function is a Gaussian

function

�(t) =
1

τ
√

2π
e−

t2

2τ2 . (4)

It is more convenient to work in the domain

of frequency, by using the Fourier transformed

time-averaging function,

K(ω) =

∫ ∞

−∞
dt�(t)eiωt, (5)

which is real and even, K(−ω) = K(ω) = K∗(ω), and

has a finite width of ωK ≈ 1/τ. The Fourier transform

of the convolution Eq.(3) is just the product of the

individual Fourier transforms:

F(ω) = K(ω)F(ω). (6)

K(ω) is also called the cut-off function, which acts on

F(ω) in such a way that F(ω) is essentially unchanged

for small frequencies, ω � ωK , whereas frequencies

larger than the width ω 	 ωK are strongly suppressed.

2



2.2. Time-averaged Hamiltonian in intermediate RWA

In order to apply the time-averaging function to the

QRM, we impose the condition

g � ωK (7)

where the cut-off frequency ωK is chosen in such a way

that the state interaction-picture state |ψ(t)〉 is essentially

constant over the averaging interval, i.e. |ψ(t)〉 ≈ |ψ(t)〉.
Upon time-averaging, the Schrödinger equation of the

QRM in the interaction picture can be written as [4, p.

354]

i�
∂

∂t
|ψ(t)〉 = Hint |ψ(t)〉 , (8)

where time-averaged Hamiltonian Hint(t) reads

Hint(t) = Hint,r(t) + Hint,ar(t), (9)

Hint,r(t) = �gr

(
aσ+eiΔt + a†σ−e−iΔt

)
, (10)

Hint,ar(t) = �gar

(
aσ−e−iΣt + a†σ+eiΣt

)
. (11)

Here, the time-averaged coupling strengths for

co-rotating term gr and for counter-rotating term

gar, are modified by the cut-off functions, such that

gr = K(±Δ)g and gar = K(±Σ)g, with Δ = ωa − ωr

and Σ = ωa + ωr. This guarantees that the co-rotating

terms σ+a, σ−a† and the counter-rotating terms σ+a†,
σ−a contribute differently to the dynamics of the

system, depending on the separation of the frequency

scales. Notice that since the cut-off frequency ωK is

coupling strength dependent (c.f. Eq.(7)), the cut-off

function K(ω) thus is a function of both g and ω,

i.e. K(ω,ωK(g)).

Going back to Schrödinger picture, we then have the

time-averaged quantum Rabi model as

HRabi = H0 + Hr + Har, (12)

where

Hr = �grX+, with X± = aσ+ ± a†σ−; (13)

Har = �garY+, with Y± = aσ− ± a†σ+. (14)

The condition of |Δ| ≤ Σ is generally satisfied in

cavity/circuit QED systems, but this does not give a

justification for us to neglect the contribution of the

counter-rotating Hamiltonian Har, and the QRM is still

needed to describe the system. In the case of RWA, the

sufficiently weak coupling condition, g � min{ωr, ωa},
allows us to separate the frequency scales by

g � ωK � min{ωr, ωa} ≤ Σ. (15)
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Figure 1: The ratio of the time-averaged coupling strengths gar for

counter-rotating terms to gr for co-rotating terms as a function of

coupling strength g/ωr , with Gaussian weighting function of width

ωK = 10g for small detuning, Δ = 0.01ωr . As the coupling strength

is further increased, even though the near resonance condition is

satisfied, the weak coupling condition is no longer respected and

hence, RWA is not applicable any longer. The inset is a zoom of the

region of g/ωr between 0 and 0.1.

Therefore, when the coupling strength is weak

compared to the free energy of the system,

counter-rotating contribution is negligible since the

cut-off function K(Σ) is vanishingly small. In Fig. 1, we

show the ratio between the two time-averaged coupling

strengths gar and gr as a function of the normalized

coupling strength g/ωr, with Gaussian weighting

function of width ωK = 10g for small qubit-resonator

detuning Δ = 0.01ωr. We note that, with small coupling

strength, i.e. g/ωr � 0.05, the time-averaged coupling

strength gar for counter-rotating terms is negligible

for small detuning, which agrees well with the RWA

conditions. We then arrive at the time-averaged JCM in

Schrödinger picture,

HJC =
1

2
�ωaσz + �ωra†a + �grX+. (16)

However, as the coupling strength is getting larger, the

contribution of the counter-rotating terms is increasing

and hence, needs to be included to describe the

dynamics correctly.

3. Near resonance case in intermediate RWA

In the near resonance case of |Δ| � min{ωa, ωr} �
ωa + ωr, the time-averaged coupling strength for

counter-rotating terms is much smaller than the

time-averaged coupling strength for co-rotating

terms, gar � gr. Thus, we take the time-averaged

counter-rotating Hamiltonian in Eq.(14) as a

perturbation to the time-averaged Jaynes-Cummings

Hamiltonian in Eq.(16) and apply the non-degenerate

stationary perturbation theory to obtain the
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second-order modification for energy [34, p.249].

The results can be written as

E0,g = E(0)
0,g + E(1)

0,g + E(2)
0,g, (17)

En,± = E(0)
n,± + E(1)

n,± + E(2)
n,±, (n = 1, 2, 3...), (18)

where

E(0)
0,g = −

1

2
�ωa, (19)

E(0)
n,± =

(
n +

1

2

)
�ωr ± 1

2
�

√
Δ2 + 4g2

r (n + 1), (20)

E(1)
0,g = E(1)

n,± = 0, (21)

and

E(2)
0,g = |�gar |2

⎛⎜⎜⎜⎜⎜⎜⎝ |C1|2
E(0)

0,g − E(0)
1,+

+
|S 1|2

E(0)
0,g − E(0)

1,−

⎞⎟⎟⎟⎟⎟⎟⎠ , (22)

E(2)
0,+ = 2 |�garS 0|2

⎛⎜⎜⎜⎜⎜⎜⎝ |C2|2
E(0)

0,+ − E(0)
2,+

+
|S 2|2

E(0)
0,+ − E(0)

2,−

⎞⎟⎟⎟⎟⎟⎟⎠ , (23)

E(2)
0,− = 2 |�garC0|2

⎛⎜⎜⎜⎜⎜⎜⎝ |C2|2
E(0)

0,− − E(0)
2,+

+
|S 2|2

E(0)
0,− − E(0)

2,−

⎞⎟⎟⎟⎟⎟⎟⎠ , (24)

E(2)
1,+ =

|�garC1|2
E(0)

1,+ − E(0)
0,g

+ 3 |�garS 1|2
⎛⎜⎜⎜⎜⎜⎜⎝ |C3|2

E(0)
1,+ − E(0)

3,+

+
|S 3|2

E(0)
1,+ − E(0)

3,−

⎞⎟⎟⎟⎟⎟⎟⎠ , (25)

E(2)
1,− =

|�garS 1|2
E(0)

1,− − E(0)
0,g

+ 3 |�garC1|2
⎛⎜⎜⎜⎜⎜⎜⎝ |C3|2

E(0)
1,− − E(0)

3,+

+
|S 3|2

E(0)
1,− − E(0)

3,−

⎞⎟⎟⎟⎟⎟⎟⎠ , (26)

E(2)
n≥2,+ = n |�garCn|2

⎛⎜⎜⎜⎜⎜⎜⎝ |S n−2|2
E(0)

n,+ − E(0)
n−2,+

+
|Cn−2|2

E(0)
n,+ − E(0)

n−2,−

⎞⎟⎟⎟⎟⎟⎟⎠

+(n + 2) |�garS n|2
⎛⎜⎜⎜⎜⎜⎜⎝ |Cn+2|2

E(0)
n,+ − E(0)

n+2,+

+
|S n+2|2

E(0)
n,+ − E(0)

n+2,−

⎞⎟⎟⎟⎟⎟⎟⎠ ,
(27)

E(2)
n≥2,− = n |�garS n|2

⎛⎜⎜⎜⎜⎜⎜⎝ |S n−2|2
E(0)

n,− − E(0)
n−2,+

+
|Cn−2|2

E(0)
n,− − E(0)

n−2,−

⎞⎟⎟⎟⎟⎟⎟⎠

+(n + 2) |�garCn|2
⎛⎜⎜⎜⎜⎜⎜⎝ |Cn+2|2

E(0)
n,− − E(0)

n+2,+

+
|S n+2|2

E(0)
n,− − E(0)

n+2,−

⎞⎟⎟⎟⎟⎟⎟⎠ ,
(28)
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Figure 2: (Color online) The system spectrum as a function of

the coupling strength g/ωr with the time-averaged counter-rotating

Hamiltonian of the IRWA in second perturbation theory (black solid

lines) compared to the JCM (blue dashed-dotted lines) and the QRM

(red dashed lines) for Δ = 0 and ωK = 10g.

with Cn = cos θn, S n = sin θn, and θn =

arctan(2gr
√

n + 1/Δ).

The eigenenergies of the ground and low-lying

excited states as a function of coupling strength g/ωr are

plotted in Fig. 2, which are obtained by our approach of

IRWA (black solid lines), the JCM (blue dashed-dotted

lines) and the QRM (red dashed lines). As shown in

figure Fig. 2, the JCM curves deviate from the QRM

curves for increasing coupling strength. The curves

of the second-order perturbation theory in IRWA agree

with the numerical results of the QRM for ultrastrong

coupling regime of g/ωr up to about 0.3.

4. Dispersive case in intermediate RWA

In this section, we will study the dynamics of the

Rabi Hamiltonian in the dispersive limit, where the

qubit and the resonator are far detuned compared

to the coupling strength g � |Δ|. The dispersive

regime is of practical interests with applications in

many cavity/circuit QED systems, such as quantum

non-demolition measurement of the qubit [35], parity

measurement of the two- or multi-qubit state [36],

and quantum gate operations [37]. However, most

of these applications were studied under the condition

of strong coupling regime, where RWA still holds.

In 2009, Zueco et al. generalized the studies of

dispersive Hamiltonian to the ultrastrong coupling

regime [19]. Although the effect of counter-rotating

terms is merely quantitative in single qubit case, the

treatment beyond RWA gives rise to a qualitatively

different effective model for multi-qubit scenario. Using
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the time-averaging functions in Sec. 2 to keep track

of both the co-rotating and counter-rotating terms in

the Hamiltonian, we can gain a better insight of their

contributions and hence, the transition from the JCM to

the QRM.

4.1. Dispersive Regime in One Qubit
In the dispersive limit, where the coupling strength is

much lesser than the qubit-resonator detuning,

g � |Δ| , (29)

the time-averaged QRM in Eq.(12) can be transformed

to

Hd
ir =UHRabiU†

≈�
2
ωaσz + �ωra†a +

�

2

(
g2

r

Δ
+

g2
ar

Σ

) [
σz

(
2a†a + 1

)]

+
�

2
grgar

(
1

Δ
+

1

Σ

) [
σz

(
a†2
+ a2

)]
, (30)

up to second order in λ = gr/Δ and Λ = gar/Σ via the

unitary transformation [19, 38],

U = exp[λX− + ΛY−]. (31)

X− and Y− are defined in Eq.(13) and Eq.(14). In strong

coupling regime with RWA, we have the following

inequalities

g � |Δ| � ωK � Σ, (32)

which encapsulate the dispersive limit and the RWA

conditions (near resonance and weak coupling limit)

while respecting the time-averaging condition Eq.(7).

When these inequalities are satisfied such that gar �
0, gr = g, the counter-rotating terms can be safely

discarded. This gives rise to

Hd
r =

�

2

(
ωa +

g2

Δ

)
σz + �

(
ωr +

g2

Δ
σz

)
a†a, (33)

where the oscillator frequency is shifted as

ωr → ωr,r = ωr ± g2/Δ, (34)

depending on the state of the qubit. Similarly, the level

separation of the qubit is shifted to

ωa → ωa,r = ωa +

(
g2

Δ
+ 2

g2

Δ
a†a

)
, (35)

depends on the number of photons in the resonator.

The term 2a†ag2/Δ, which is linear in the mean photon

number n = 〈a†a〉, is the ac-Stark shift [6] and g2/Δ is

the Lamb shift [19, 39]. On the other hand, given the

fact that the resulting Hamiltonian Hd
r commutes with

σz, i.e. [Hd
r , σz] = 0, it allows quantum non-demolition

measurement since the qubit’s state will not be changed

upon the evolution of the system. Hence, the state

of the qubit can be inferred by probing the resonator

frequency.

In ultrastrong coupling regime, where either or both

of the RWA conditions are violated, we have the

following inequalites instead,

g � |Δ| ≤ Σ � ωK , (36)

and all terms in Eq.(30) will be retained, and the

effective Hamiltonian then reads

Hd
nr =

�

2
ωaσz + �

[
ωr +

g2

2

(
1

Δ
+

1

Σ

)
σz

] (
a + a†

)2
.

(37)

This expression is analogous to the RWA dispersive

Hamiltonian in Eq.(33), with an extra contribution of

Σ in the coupling term. However, this Hamiltonian is

not diagonal in the eigenbasis of H0 due to a†2
and

a2. Nevertheless, for g/ωr < 1, we can reinterpret

the result as the state-dependent shift of the resonator

frequency’s potential curvature ω2
r [19]. Hence, the

dispersive Hamiltonian with non-RWA gives rise to a

shift in the oscillator frequency of

ωr → ωr,nr = ωr ± g2

(
1

Δ
+

1

Σ

)
, (38)

which implies that dispersive readout is also possible

even in the ultrastrong coupling regime. Looking

back at Eq.(30), we notice that both the time-averaged

coupling strength gar and gar contribute to the

two-photons terms a†2
and a2 in the Hamiltonian.

The time average coupling strength associated with

counter-rotating terms also leads to an extra qubit

dependent shift g2σz/Δ.

Next, we study dynamics of the dispersive case

from strong coupling regime to ultrastrong coupling

regime use the time-averaged coupling strength in

IRWA by numerical simulation. In Fig. 3, we show

the frequency shift of the resonator as a function of

normalized coupling strength g/ωr for positive detuning

Δ > 0 and negative detuning Δ < 0 in RWA (blue

dashed-dotted lines), non-RWA (red dashed lines) and

IRWA (black solid lines) with Gaussian weighting

function. It is clear that the RWA results have a

totally different trend compared with the non-RWA

5
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Figure 3: (Color online) Resonator frequency shift with single qubit

in dispersive case as a function of coupling strength g/ωr obtained

with RWA (blue dashed-dotted lines), non-RWA (red dashed lines)

and IRWA (black solid lines) for (a) positive detuningΔ > 0 (Δ = 10g)

and (b) negative detuning Δ < 0 (Δ = −10g) with Gaussian weighting

function of width ωK = 10|Δ|. The breakdown of RWA is obvious,

where it underestimates the dispersive shift for positive detuning and

gives rise to a spurious shift in the absence of qubit (ωa = 0) for

negative detuning.

results, especially for larger coupling strength. It

underestimates the dispersive shift for positive detuning

and predicts a shift even when the qubit’s frequency ωa

tends to be zero for negative detuning (Δ → ωr as g

increases). This indicates the breakdown of RWA in

predicting the dispersive resonator frequency shift in

ultrastrong coupling regime. Meanwhile, our IRWA

shows the manifestation of the counter-rotating terms

as the coupling strength increases.

In Fig. 4, we show the frequency shift of the

resonator as a function of detuning Δ/ωr in RWA (blue

dashed-dotted lines), non-RWA (red dashed lines) and

IRWA (black solid lines) with coupling strength of

g/ωr = 0.1 and Gaussian weighting function of width

ωK = 10|Δ|. For this relatively large coupling strength,

it is shown that the RWA results underestimate the

resonator frequency shift for JCM, whereas the IRWA

predictions agree quite well with the non-RWA results

for QRM.

4.2. Dispersive Regime with multi-qubit
We now extend our discussion to multiple qubits

coupled to a single mode resonator, where the

time-averaged Hamiltonian takes the form [40]

H
nq
Rabi =

�

2

∑
j

ω
j
aσ

j
z + �ωra†a + �

∑
j

(
g j

rX j
+ + g j

arY
j
+

)
,

(39)

with X j
± = aσ j

+ ± a†σ j
− and Y j

± = aσ j
− ± a†σ j

+. Applying

the unitary transformation

Unq = exp

⎛⎜⎜⎜⎜⎜⎜⎝
∑

j

(
λ jX

j
− + Λ jY

j
−
)⎞⎟⎟⎟⎟⎟⎟⎠ , (40)

and expanding the transformed Hamiltonian to the

second order in λ j and Λ j, we obtain the dispersive
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Figure 4: (Color online) Resonator frequency shift with single qubit

in dispersive case as a function of detuning Δ/ωr obtained with RWA

(blue dashed-dotted lines), non-RWA (red dashed lines) and IRWA

(black solid lines) for (a) positive detuning Δ > 0 and (b) negative

Δ < 0 with Gaussian weighting function of width ωK = 10|Δ| and

g/ωr = 0.1.

Hamiltonian

H2q,d
ir =�ωra†a +

�

2

∑
j

ω
j
aσ

j
z

+
�

2

∑
j

⎛⎜⎜⎜⎜⎜⎜⎝ (g j
r)

2

Δ j
+

(g j
ar)

2

Σ j

⎞⎟⎟⎟⎟⎟⎟⎠
[
σ

j
z

(
2a†a + 1

)]

+
�

2

∑
j>k

g j
rgk

r

(
1

Δ j
+

1

Δk

) (
σ

j
−σ

k
+ + σ

j
+σ

k
−
)

− �

2

∑
j>k

g j
argk

ar

(
1

Σ j
+

1

Σk

) (
σ

j
−σ

k
+ + σ

j
+σ

k
−
)

+
�

2

∑
j>k

g j
rgk

ar

(
1

Δ j
− 1

Σk

) (
σ

j
−σ

k
− + σ

j
+σ

k
+

)

+
�

2

∑
j>k

g j
argk

r

(
1

Δk
− 1

Σ j

) ] (
σ

j
−σ

k
− + σ

j
+σ

k
+

)
,

(41)

where the last four terms are the effective coupling

between the qubits mediated by the resonator.

To illustrate, we now take a two-qubit system as

an example. In RWA, the counter-rotating terms are

discarded because g j,k
ar ≈ 0. By setting all g j

r = g and

ω
j
a = ωa, we obtain

H2q,d
r =

�

2

∑
j

(
ω

j
a +

g2

Δ

)
σ

j
z + �

∑
j

(
ωr +

g2

Δ
σ

j
z

)
a†a

+ �
g2

Δ

(
σ

j
−σ

k
+ + σ

j
+σ

k
−
)
, (42)

where the interqubit interaction is of isotropic XY type,

σ
j
−σk
+ + σ

j
+σ

k−. In a frame rotating at the qubit’s

6



frequency, H2q,d
r generates the evolution

U2q,d
r =exp

[
−iJrt

(
a†a +

1

2

) (
σ

j
z + σ

k
z

)]

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 cos Jrt i sin Jrt 0

0 i sin Jrt cos Jrt 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⊗ Ir (43)

with Ir being the identity operator in resonator space and

the effective coupling strength being

Jr =
g2

Δ
. (44)

This has been employed to generate qubit-qubit

entanglement and quantum gate operations [6, 40]. For

instance, by turning on the coupling for a period t =
πΔ/4g2, we can generate a

√
iSWAP gate which can

be used to transform the state
∣∣∣e j, gk

〉
into an entangled

state 1/
√

2
(∣∣∣e j, gk

〉
+ i

∣∣∣g j, ek

〉)
. Here,

∣∣∣e j

〉
and |gk〉 are

the excited state for j-th qubit and ground state for the

k-th qubit, respectively.

In ultrastrong coupling regime without RWA, all the

terms will be retained. By setting all g j
r = g j

ar = g and

ω
j
a = ωa to be equal, we obtain

H2q,d
nr =

�

2

∑
j

[
ω

j
a + g2

(
1

Δ
+

1

Σ

)]
σ

j
z

+ �g2

(
1

Δ
− 1

Σ

)
σ

j
xσ

k
x

+ �
∑

j

[
ωr + g2

(
1

Δ
+

1

Σ

)
σ

j
z

]
a†a, (45)

where the interqubit interaction is of Ising type σ
j
xσ

k
x.

The evolution operator reads

U2q,d
nr = exp

[
−iJnr,0t

(
a†a +

1

2

) (
σ

j
z + σ

k
z

)]

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos Jnr,1t 0 0 i sin Jnr,1t

0 cos Jnr,1t i sin Jnr,1t 0

0 i sin Jnr,1t cos Jnr,1t 0

i sin Jnr,1t 0 0 cos Jnr,1t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⊗ Ir,

(46)

in the frame rotating at the qubit’s frequency with the

effective coupling strength being

Jnr,0 = g2

(
1

Δ
+

1

Σ

)
, (47)

Jnr,1 = g2

(
1

Δ
− 1

Σ

)
. (48)
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Figure 5: (Color online) The effective coupling strength in two-qubit

dispersive case as a function of coupling strength g/ωr obtained with

RWA (blue dotted lines), non-RWA (red dashed lines) and IRWA

(black solid lines and green dashed-dotted lines) for (a) positive

detuning Δ > 0 (Δ = 10g) and (b) negative detuning Δ < 0

(Δ = −10g) with Gaussian weighting function of width ωK = 10|Δ|.

It is worth noting that the extension from Eq.(42) to

Eq.(45) is not just a renormalization of the parameters.

The effective qubit-qubit interaction type is indeed

different, which will be clearer when we compare

the evolution operators for RWA and non-RWA

(Eq.(43) and Eq.(46)), where one is isotropic XY

interaction while the other is Ising type interaction

respectively. To understand this apparent sudden

transition between RWA and non-RWA in dispersive

regime for the multi-qubit, we invoke the time-averaged

IRWA interpretation. From the effective Hamiltonian in

Eq.(41), the evolution operator can be written as

U2q,d
ir = exp

[
−iJir,0t

(
a†a +

1

2

) (
σ

j
z + σ

k
z

)]

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos Jir,2t 0 0 i sin Jir,2t

0 cos Jir,1t i sin Jir,1t 0

0 i sin Jir,1t cos Jir,1t 0

i sin Jir,2t 0 0 cos Jir,2t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⊗ Ir,

(49)

where the effective coupling strengths being

Jir,0 =
(g j

r)
2

Δ j
+

(g j
ar)

2

Σ j
, (50)

Jir,1 = g j
rgk

r

(
1

Δ j
+

1

Δk

)
− g j

argk
ar

(
1

Σ j
+

1

Σk

)
, (51)

Jir,2 = g j
rgk

ar

(
1

Δ j
− 1

Σk

)
+ g j

argk
r

(
1

Δk
− 1

Σ j

)
. (52)

In Fig. 5, we show the transition of the difference

for the qubit-qubit interaction type from RWA case to

non-RWA using the IRWA with Gaussian weighting

function of width ωK = 10|Δ|. As we can see, when

the coupling strength is very small, g/ωr � 0.1, the

IRWA curves are closer to the RWA curves for Jir,1,

whereas they are essentially zero for Jir,2. When the

7



coupling strength is increased, the counter-rotating term

coupling strength gar starts to become significant, and

hence, leads to the correction of Jir,1 and manifestation

of Jir,2. As the coupling strength further increases, our

IRWA curves start to deviate from the RWA curves and

agree better with the non-RWA curves, showing the

transitions from RWA to non-RWA. Eventually as the

coupling strength reaches ultrastrong coupling regime,

we regain the non-RWA results as in Eq. (46).

5. Conclusion

In this paper, we introduced the IRWA that is based

on the time-averaging method for better understanding

of the roles of the “counter-rotating” terms in the

QRM and the transition between strong coupling and

ultrastrong coupling regimes. The eigenenergies of

the system were studied by combining the perturbation

theory and IRWA for near resonance case. The results

agreed well with the JCM predictions for small coupling

strength, i.e. g/ωr up to 0.1 and with the QRM

results for larger coupling strength, i.e. g/ωr up

to 0.3. We also showed that in dispersive regime,

our IRWA predication gave a good explanation of the

qubit-dependent frequency shifts in the single qubit

scenario. This approach revealed the emergence of

counter-rotating terms in the interqubit coupling, which

leads to both quantitative and qualitative differences in

the interaction strength and interaction type. Compared

with other approaches [11, 12, 16, 17], our IRWA

method allows us to gain the physical consequences

of the co-rotating and counter-rotating coupling terms

individually by tracing those terms separately. As

a remark, there are several aspects that still can be

explored with the idea of IRWA. For instance, by

relating the measurement interval to the width of the

time-averaging function ωK in our analysis, we can

extend the result in [41] to observe the transition from

quantum Zeno effect to quantum anti-Zeno effect [42,

43]. Our IRWA approach could also be applied to the

studies of applicability of RWA in various phenomena,

such as Berry phase in quantum systems [44, 45],

asymmetric couplings [12], and generalized multi-qubit

quantum Rabi model [32]. The IRWA might be useful

as well in studying the dynamics of multiple coupling

regimes in a single system, for example, by having one

qubit coupled strongly in RWA regime and the other one

operated ultrastrongly beyond RWA regime.
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