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1. Introduction

In recent studies, the bandwidth of communication channel, the reliability of information
transferring, and the performance of data storing devices become the major design factors in
digital transmission /storage systems. In consideration of those factors, there are many
algorithms to detect or remove the noisefrom the communication channel and storage media,
such as cyclic redundancy check (CRC) and errorcorrecting code (Peterson & Weldon, 1972;
Wicker, 1995). The former, a hush function proposed by Peterson and Brown (Peterson &
Brown, 1961), is utilized applied in the hard disk and network for error detection; the later is
a type of channel coding algorithms recover the original data from the corrupted data
against various failures. Normally, the scheme adds redundant code(s) to the original data
to provide reliability functions such as error detection or error correction. The background
of this chapter involves the mathematics of algebra, coding theory, and so on.

In terms of the design of reliable components by hardware and / or software
implementations, a large proportion of finite filed operations is used in most related
applications. Moreover, the frequently used finite field operations are usually simplified and
reconstructed into the hardware modules for high-speed and efficient features to replace the
slow software modules or huge look-up tables (a fast software computation). Therefore, we
will introduce those common operations and some techniques for circuit simplification in
this chapter. Those finite field operations are additions, multiplications, inversions, and
constant multiplications, and the techniques include circuit simplification, resource-sharing
methods, etc. Furthermore, the designers may use mathematical techniques such as group
isomorphism and basis transformation to yield the minimum hardware complexities of
those operations. And, it takes a great deal of time and effort to search the optimal designs.
To solve this problem, we propose the computer-aided functions which can be used to
analyze the hardware speed/complexity and then provide the optimal parameters for the IP
design.

This chapter is organized as follows: In Section 2, the mathematical background of finite
field operations is presented. The VLSI implementation of those operations is described in
Section 3. Section 4 provides some techniques for simplification of VLSI design. The use of
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116 VLSI

computer-aided functions in choosing the suitable parameters is introduced in Section 5.
Finally, the result and conclusion are given.

2. The mathematic background of finite field

Elements of a finite field are often expressed as a polynomial form over GF(g), the
characteristic of the field. In most computer related applications, the Galois field with
characteristic 2 is wildly used because its ground field, GF(2), can be mapped into bit-0 and
bit-1 for digital computing. For convenience, the value within two parenthesises indicates
that the coefficients for a polynomial in descending order. For example, the polynomial,
x°+x’+x+1, is represented by {1101001} in binary form or {69} in hexadecimal form. So
does an element o € GF(2") is presented as symbol based polynomial.

2.1 The common base representations

2.1.1 The standard basis

If an element o € GF(2") is the root of a degree m irreducible polynomial f(x), ie.,
f(ax)=0, then the set {1,051,052,...,05””1} forms a basis, is called a standard basis, a

polynomial basis or a canonical basis (Lidl & Niederreiter, 1986). For example, construct
E=GF(2") with the degree 4 irreducible polynomial f(x)=x"+x+1, suppose f(a)=0,
thatis, ' =a+1and E=<a >U{0} as Table 1.
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a 1 1 1 a't 1
Table 1. The standard basis expression for all elements of E=GF(2")

2.1.2 The normal basis

For a given GF(2"), there exists a normal basis {a,az,azz,...,az”‘} . Let ,BzZO] ba® be
represented in a normal basis, and the binary vector (b,,b,,...b, ) is used to represent the
coefficients of S, denoted by f = (b,,b,,...b, ). Since a* =1=a* by Fermat’s little theorem
(Wang et al., 1985), p=b o’ +ba* +--+b, a” =0, ,b,,..b,,)
or f* =(b bm,m.,...,blH,bo,bl,...,bm,,.,l) . That is, the squaring operations ( 2'th power

m=i 7

m-2 m-17

operations) can be constructed by cyclic rotations in software or by changing lines in
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hardware, which is with low complexity for practical applications (Fenn et al., 1996).

2.1.3 Composite field

For circuit design, using a composite field to execute some specific operations is an effective
method, for example, the circuit of finite field inversion obtained in composite filed has the
minimum complexity. The famous example is found in most hardware designs of AES VLSI
(Hsiao et al., 2006; Jing et al., 2007), in which the S-box is a non-linear substitution for all
elements in GF(2°) can be designed with a less area complexity by several isomorphism

composite fields such as GF((2*)'), GF((2')*), and GF(((2*)*)) (Morioka & Satoh, 2003). In

this section, we introduce the process to construct a composite field and the basis
transformation between a standard basis and a basis in composite field.

Let GF(2') be represented in a standard basis with relation polynomial
fx)=x"+x"'+x"+x*+1 ( f(x) is primitive) and f(a)=0 such that («)=GF(2*) and
y=a’ is a primitive element in the ground field GF(2*), where r=(2° -1)/(2* -1)=17 . We
construct the composite field GF((2')’) over the field GF(2') using the irreducible

polynomial g(x) with degree 2 over GF(2"), which is given as follows
gx)=(x+a)x+a®)=x*+(a+a’ )x+a” =x*+a x+a” . 1)

Such that y =a" is an element of GF(2”). In order to represent the elements of the ground
field GF(2), we use the term in g(x) as the basis element, whichis y =" . An element A is
expressed in GF((2*)*) as

A=a +aa . )
where a’ € GF(2") . We can express a4’ in GF(2") using y=a" as the basis element
r = - - 2, = 3 = - 17, = 3% , = _5l
a =a,+a,y+a,y +ay =a,+a,a’ +a,a”+aa’. €)

where @, €GF(2) for j=0,1 and i=0,1,2,3 . Therefore, the representation of A in the

composite field is obtained as
! ’ - - 17 - 34 - 51 - - 18 = | 35 - 52
A=a,+aa=(a,+a,a” +a,a” +a,a” )+ (a,c+a,0” +a,a” +a,a”). 4)

17i+j

Next, substitute the terms « for j=0,1 and i=0,1,2,3 by the relation polynomial

fx)=x"+x"+x"+x"+1 as follows:

a"=a +at+a’, at=a’+a’+at+al, ¥ =a’+a’,

®)

a®=a’+a’+a’+1, ¥ =a’ +at+a’+a’, ¥ =at+a’.

By substituting the above terms in expression Equation (4), we obtain the representation of
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A in the standard basis (1,«,a',...a”) as
— 2 3 4 5 6 7
A=q,+a,a +a,a" +ao’ +a,a’" +aa’ +a.a’ +a,a . (6)

The relationship between the terms a4, for h=0,1,...,7 and a, for j=0,1 and i1=0,1,2,3

determines a 8 by 8 conversion matrix 7 (Sunar et al., 2003). The first row of the matrix 7'
is obtained by gathering the constant terms in the right hand side of Equation (4) after the
substitution, which gives the constant coefficients in the left hand side, i.e., the terma, . A

simple inspection shows that o, =a, +a, . Therefore, we obtain the 8x8 matrix T and this

00

matrix gives the representation of an element in the binary field GF(2°) given its

representation in the composite field GF((2*)*) as follows:

2,1 1000010 0]a,]
a,| 10011100 0|7,
e, 10010011 1|z,
| 10111011 0|a,
a,| 10100001 1|7, @)
a,| 10000010 0|7,
a,| 10010000 0]z,
4] [0 100001 0]a,|

The inverse transformation, i.e., the conversion from GF(2°) to GF((2')*) , requires

computing the T™ matrix. We can use Gauss-Jordan Elimination to derive the T~ matrix as
follows:
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2.1.4 The basis transformation between standard basis and normal basis

The normal basis is with some good features in hardware, but the standard basis is used in
popular designs. Finding the transformation between them is an important topic (Lu, 1997),
we use GF(2') as an example to illustrate that. Suppose GF(2') is with the relation

p(x)=x"+x’+1 which is a primitive polynomial. Let p(a)=0 such that
B, =(a',a',a*,a’) form a standard basis. Let y=a" and the set {71,72,74,7/8} is linear
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independent such that B, = (;/],;/2, 7“,7/") forms a normal basis. There exists a matrix T such
that B =T xB] and B =T xB, . The matrixes T and T are listed as follows.

1

1 1

1 0

1 1
a’ a’ 0
a’ a’ 1
a| " a0
a’ a’ 1

2.2 The basic operation in finite field

0 01
010
T =
011
1 11

S O O -

Y
Y{Y'Qﬁﬁ

m R Rk O
o o o =

1
0
1
1

2.2.1 Addition and subtraction

For a finite field with characteristic 2, addition and subtraction are performed by the bitwise
XOR operator. For example, let a(x)=x"+x*+x"+1, b(x)=x"+x"+x'+1, and c(x) be the
summation of two polynomials, thus, c(x)=a(x)+b(x)=2x"+x"+x"+2x' +2=x"+x" or
perform in binary form {10111} + {11011} = {01100} .

2.2.2 Multiplication and inversion
The multiplication in a finite field is performed by multiply two polynomials modulo a
specific irreducible polynomial. For example, consider the finite field E=GF(2") which is

with the relation p(x)=x'+x+1 and let p(a)=0 thus (¢’,a',a*,a’) forms a standard
basis. Supposea,b,ceE and a=a’+1, b=a’+a+1, and c is the product of them. Thus
c=axb=(a’+1)x(a* +a+1)=a’ +a' +a’ +a* +a+1, refer to Table 1, we have the product
result as c=(a’+a)+(@+1)+a’+a*+a+1l=a’+a . For every nonzero element
y€E=GF(2"), one has y* =y or y" =y”" equivalently (Dinh et al., 2001). Therefore, the
division for finite field can be performed by the multiplicative inversion. For example,
consider the inversion in GF(2"), " =y**, and one can obtain this as Fig. 1.

2.2.3 Square operation

Consider an element A=a,+ax' +---+a, x"" € E where a, e GF(2) for 0<i<m, the square

m-1

operation for the characteristic 2 finite field is: A* = (ao +ax' +--+a, x" )2 .For a,eGF(2),

we have a’ =4 and thus A>=a,+a,x* +---+a_  x*""

m-1

. Besides, those items with power not

less m can be expressed by standard basis. Thus, we can perform the square operation by
some finite field additions, i.e, XOR gates. For instance, let E=GF(2') constructed by

f(x)=x"+x+1, an element A=a,+a,x'+ax*+ax’e€E, A’=a,+ax’+a,x" +ax’. Two
terms x* and x° can be substituted by x+1 and x’+x according to Table 1. We have
A’=ax"+ax’+a,(x+1)+a,(x’+x) or A’=(a,+a,)+(a,+a,)x+ax’+ax’ . The same
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property is also suitable for the power 2'operation, suchas A*,A*,...,A* .

3. The hardware designs for finite field operations

3.1 Multiplier
Finite field multiplier is the basic component for most applications. Many designers choose
the one with standard basis for their applications, because the standard basis is easier to
show the value by the bit-vector in digital computing. As follows, we introduce two most
used types of finite field multipliers, one is the conventional multiplier and another is the
bit-serial one.

3.1.1 Conventional multiplier
As the statement in Section 2.2.2, let A,B,C eGF(2") are represented with standard basis
and C=AxB , where A= 01 aa' , B :Zo] ba" , and the product

=

P:(Z':aia")x (Z':b,a’): z_lp,a’ . Note that every element in GF(2") is with the

i

relation f(x) described in Section 2.1.1, such that the terms with order greater than m,

m+1 2m-1

a",a™,...,a™" , can be substituted by the linear combination of standard basis
{1,a',...,a""}. Thus, we can observe that there are m’and gate and about mxO(m) XOR

gates in the substitution for high-order terms.

3.1.2 Massey-Omura multiplier

Here, we introduce the popular version named the bit-serial type of Massey-Omura
multiplier. It is based on the normal basis, and the transformation between standard basis
and normal basis is introduced in Section 2.1.4. Let A,B,C € GF(2") are represented with

. m-1 ’ m-1 : m-1 ’

normal basis and C=AxB, where A :Zi:o aa’® , B= Zizo ba®,and C= Zi:a c,a® . Denote
the coefficient-vector of A, B, and C by a, b, and c, and the notation 4" means A’, we
have:

2°+2 2’42 2°42"
b(]
2'+2° a2‘+2' 1. a2‘+2‘ ! bl .
C=A><B=[a0,al,...,a,”4]>< ) ) i . x| . |maxMxb', (10)
aZ +2' aZ” +2! aZ” +2' b

where M=M,a+M,a* +---+ M, a® ,such that

m=1

Cm—1—i =ax Mm—l—i x bT = a“) x Mm4 x (b(l>)T * (11)

Using Equation (11), the bit-serial Massey-Omura multiplier can be designed as following:
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0)
L p| Shift-register A " » AND-XOR

bm» Plane

— Cioi

Ly Shift-register B

Fig. 1. The Massey-Omura bit-serial multiplier

In Fig. 1, the two shift-register perform the square operation in normal basis, and the
complexity of and-xor plane is about O(m) and relative to the number of nonzero element

nM . .

circuits.

Therefore, Massey-Omura multiplier is suitable to the design of area-limited

3.2 Inverse

In general the inverse circuit is usually with the biggest area and time complexity among
other operations. There are two main methods to implement the finite field inverse, that is,
multiplicative inversion and inversion based on composed field. The first method
decomposes inversion by multiplier and squaring, and the optimal way for decomposing is
proposed by Itoh and Tsujii (Itoh & Tsujii, 1988). The later one is based on the composed
tield and suited for area-limited circuits, which has been widely used in many applications.

3.2.1 Multiplicative inversion
From Fermat's theorem, for any nonzero element « € GF(2") holds a*" =1. Therefore,

multiplicative inversion is equal to «® . Based on this fact ¢ =a** =H’:az , Itoh and

Tsujii reduced the number of required multiplications to O(logm), which is based on the

decomposition of integer. Suppose m—lzzz a,x2" , where a e€GF(2) and a,, =1

=0 "

denoted the decimal number [14,,...a,4,],, we have the following facts:

27 1= (27 —1). 2 anh 4 Dl _q
S )T RS D B L s e | . (12)
=27+ 1) (27 +T)(2" 1) 20 mel Qe ]
Daranl 1] =g, (27" —1)2Mrast 4 Dlaanl ] | A
=, (27 = 1) (27 +1)(2" +1)21meh 4 2 neh
27— = (27 1)+ (27 +1)(27 4 1) 2k Dtk ]
=((27 +1)27 )(2* +1)---(2° +1)(2* +1)- 2"k 4
0,3 (27 + 1) (27 +1)(27 +1)20 b 20l ]
=((2" +1)2° +a,,)(2* +1)---(2* +1)(2* +1)+ 2"k -1 (14)

(((@ +1)2" +a,,)2" +1)2" +a,,)-)(2" +1)2" +a,)
(2* +1)2% +4a,)(2° +1)2° +a,
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This algorithm requires N, =len.(m-1)+wt.(m-1)-2

N, =len.(m-1)+wt.(m—1)—-1 square circuits, where len.(m—1) the length of binary

multipliers, and

representation of m—1 and wt.(m—1)is the number of nonzero bit in the representation.
For instance, if m=8 then m-1=7 , N, =len(7)+wt.(7)-2=3+3-2=4 and
N, =len.(7)+wt.(7)-1=3+3-1=5 . For the
((logz(m —fl)—‘)TM + (ﬂogz(m —1)1+ 1T, , where T,, (resp. T,) is the latency of multiplier (resp.

latency of circuit, it takes

squaring circuit). We list some results of this algorithm as Table 2.

m area latency m area latency

5 2 NM +3 NP 2TM +3 TP 11 4 NM +5 NP 4 TM +5 TP
6 3 NM +4 NP 3TM +4 TP 12 5 NM +6 NP 4 TM +5 TP
7 3 NM +4 NP 3TM +4 TP 13 4 NM +5 NP 4TM +5 TP
8 4 NM +5 NP 3TM +4 TP 14 5 NM +6 NP 4 TM +5 TP
9 3 NM +4 NP 3TM +4 TP 15 5 NM +6 NP 4 TM +5 TP
10 4 NM +5 NP 4TM +5 TP 16 6 NM +7 NP 4TM +5 TP

Table 2. The list of Itoh and Tsujii algorithm

3.2.2 Composite field inversion
The use of composite field provides an isomorphism for GF(2"), while m is not prime.

Especially, if m is even, then inverse using composite field is with very low complexity.
Consider the inverse in GF((2""*)*) where m is even. Suppose A,Be GF((2"*)*) constructed

by an irreducible polynomial P(x)=p,x+p,, where p,, p, e GF(2"?). Let A=a,x+a, and
B=bx+b,, where a,,a,,b,,b,p,,p, € GF(2"*). Assume that B is the inverse of A, thus
AxB=1 or (a,x+a,)x(bx+b)=1 modulo P(x) .
AxB=(ab,p,+ab,+ab, )x+(abp,+ab,)=1

After the distribution, one has
Therefore, ab,p, +ab,+ab, =0 and
abp,+ab,=1. Let A=(a,’ +a,ap, +p,a,’), one has b, =a,A" and b,=(a, +a,p,)A", which
is design as Fig. 2. Obviously, one can observe the inversion in GF(2") is executed by
several operations which are all in GF((2"*)*), thus the total gated count used can be

reduced.

Fig. 2. The circuit for composite field inversion
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4. Some techniques for simplification of VLSI

4.1 Finding common sharing resource in various design levels

Sharing resource is a common method to reduce the area cost. This skill can be used in
different design stages. For example, consider the basis transformation in Section 2.1.4, the
element of normal basis is obtained by the linear combination of standard basis as follows:

y=a'+a', y'=a’+a’, y'=a’+a' +a’, y=a’+a’+a' +a’. (15)

It takes 7 XOR gates for the straightforward implementation. However, if one calculate the
summation t=a’+a'+a’ firstly, then y* =t and y' =a’ +t. Therefore, the number of

XOR gates is reduced to 5. Although it is effective in the bit-level, this idea is also effective in
other design stages. Consider another example in previous section, when we form those

components A=(a,’ +a,a,p, +p,a,°) and b,=(a, +a,p,)A", it takes 3 2-input adders in two
expressions. Suppose we form the component a, +a,p, firstly, thus the number of 2-input

adder is reduced from 3 to 2 (A= (a,(a, +a,p,) +p,a,”)). Therefore, the resource-sharing idea

is suitable to different design stages.

4.2 Finding the optimal parameters of components

Another technique used to simplify circuits for finite field operations is change the original
field to another isomorphism. Although these methods are equal in mathematics, it provides
different outcomes in VLSI designs. There are two main methods to be realized.

4.2.1 Change the relation polynomial
Consider the implementations of hardware multiplier/inverse in GF(2") using FPGA, we

gather area statistics of multiplier/inverse by using different irreducible polynomials ( f(x))
and draw the line chart as Fig. 3 and Fig. 4, where the X axis indicates various irreducible
polynomials in decimal representation and the Y axis is the number of needed XOR gates. In
Fig. 3, one can observe the lowest complexity of area and delay is with f(x) is 45. The
maximum difference of XOR number (resp. delay) between two polynomials is 50 (resp. 2).

Therefore, choosing the optimal parameters has great influence in complexity in VLSI. The
same phenomenon is also been observed in Fig. 4, the maximum difference is 196 XOR gates.
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Fig. 4. The statistic of area for inverse v.s. f(x)

4.2.2 Using composite field

In Section 2.1.3, we illustrate the transformation between a finite field represented by
standard basis and a composite field. The most applications for composite field are to
design the inverse, for instance, the S-box in AES algorithm (Morioka & Satoh, 2003). As we
know, the main component in S-box is the finite field inverse of GF(2") . Here, we

implement the S-box by the multiplicative inversion described in Section 3.2.1 and by using
composite field GF((2*)*) described in 3.2.2 as Table 3 by using the Altera FPGA Stratix

251020C4 device. Obviously, the later method is with more advantages for both area and
time complexity than that of previous one.

Delay (ns) Throughput
Method LE/ALUT CLK (MHz) (MH?2)
mult. inverse 210 23.240 43.029 344.232
composite field 82 20.219 49.458 395.664

Table 3. The results for S-box using multiplicative inversion and using composite field

5. Using computer-aided functions to choose suitable parameters

According to the explanations in Section 4, we can realize the related VLSI IPs using various
parameters to bring the benefits for lower area or time complexity. However, there exist so
many isomorphisms in using finite filed, it seems that there are so many procedures and
variations to choose the parameters and hard to find a better ones. As a result, our group
developed a software tools which is the computer-aided design (CAD) to help engineers to do
the tedious analysis and search. This section will introduce the methods to apply the
isomorphism transformations between GF(2") and GF((2")*) illustrated in Section 4.1 and 4.2
step by step.

Firstly, list all irreducible and primitive polynomials in two fields as shown in Table 4 and 5,
respectively. In this table, all irreducible and primitive polynomials are represented in
hexadecimal form and we omit the most significant bit. For example, in Table 4, one chooses
1B that means (00011011); or x*+x*+x*+x+1; in Table 5 suppose the primitive element
@ € GF(2"), one chooses 18 that means (00011000); or x* +1x+ @’ .
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GF(2")

irreducible polynomials

#=30

1B

1D | 2B |2D |39 |3F |[4D | 5F | 63 | 65 | 69 | 71 | 77 | 7B | 87 | 8B

8D

9F | A3 A9 | B1 |BD|C3|CF|D7 |DD|E7 | F3 | F5 | F9

primitive polynomials

#=16

1D | 2B [2D [4D | 5F | 63 | 65 | 69 | 71 | 87 [8SD| A9 | C3 | CF | E7 | F5

Table 4. The irreducible and primitive polynomials in GF(2*)

GE((2)")

irreducible polynomials

#=120

18

19 |TA|1B |1C |1D | 1E | 1F | 21 | 22 | 25 | 26 | 29 | 2A | 2D | 2E

31

33 34|36 |39 |3B|3C|3E |41 |42 |44 | 47 | 48 | 4B | 4D | 4E

51

53 | 55 | 57 | 59 | 5B | 5D | 5F | 62 | 63 | 64 | 65 | 6A | 6B | 6C | 6D

72

7317417578 |79 |7E|7F | 81 |83 |84 | 8 | 8 | 8A | 8D | 8F

92

93 196 |97 |9A | 9B | 9E | 9F | A1 | A2 | A4 | A7 | A9 | AA| AC | AF

B4

B5|B6 | B7 |BC|BD|BE|BF |C1|C3|C5|C7|C8|CA|CC|CE

D4

D5 | D6 | D7 | D8 | D9 |DA|DB| E2 | E3 | E6 | EZ7 | E8 | E9 | EC | ED

F1

F2 | F5 | F6 | F8 | FB | FC | FF

primitive polynomials

#=60

19

1IB|1D|1E |22 |25 |29 |2D |2E |33 |34 | 39 | 3B | 3E | 42 | 44

55

59 | 5B |5D | 62 | 63 | 64 | 65 | 6B |6D | 72 | 73 | 74 | 75 | 79 | 7E

83

84 |8D |92 193 |9B |9E | A2 | A4 | A9 | B4 | B5 |[BD|BE | C3 | C5

CE

D4 | D5 | D9 |DB|E2 | E3|E9 |ED|F2 | F5 | FB

Table 5. The irreducible and primitive polynomials in GF((2*)?)

Secondly, the CAD searches for all possible combinations by the proposed algorithm as
shown in Table 6. This algorithm regards as a function used to find transformation matrices
as shown in Table 7. After we gather all results, we can choose the better parameters from
the list of analyzed results for hardware design of new IP.

Chose relation polynomial 1D for GF(2*) = p(x)=x"+x" +x° +x* +1.
Let p(a)=0 , such that VS eGF(2°) can be expressed by binary form as

(a7/aélasfa4/a3la2/a1/a())

Step Find a GF((2')*) irreducible polynomial.

L Select an irreducible polynomial in ground field GF(2') is
fi(x)=x"+x+1.Let @ be therootof f, (x),thusf,(w)=0'+w+1=0.
Select an irreducible polynomial in GF((2')*) is 189 f,(x)=x"+x+®’
and let y be therootof f,(x), f,(¥)=y"+y+@’=0.

Step Assume a generator o in GF((2')’) and generate all none-zero elements

2:

of GF((2*)*). For any element in GF((2')’) can be expressed in binary

formas (7,70, 7070 YesrYorr Vior Vi) -
Assume the T matrix = [(0'7)T ()" ... (o"’)T]M , we have
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R o]
Vi @
ey a;
Yo I\T 6\T oyr] | %
| =ley @ @l
Vo a,
Vo a,
700 1. L% L5,
Step Compute the 7™ matrix=[(c")" (¢°)" ... (6°)['es.
3 Put all none-zero elements GF((2*)*) in the following equation and check
if they all hold, i.e., [@']" =T '[o"']", where 0 <i <254 .
Step If Step 3 does not hold, return to Step 2 and choose another generator; If
4: Step 3 holds, then the T and T matrices are found.

Table 6. The proposed algorithm for searching transformation matrices

input px)=x"+x*+x" +x* +1 p(x)= GF(2%)
fi(x)=x"+x+1 fil@w)=a'"+0+1=0
L)=x"+x+ 0’ fi(x), £,(x) = GF(2')")
output [0 0100 0 0 O] 1101010 0]
01100100 01011010
00011010 100000O0O0O
T 10010000 T o 11000100
0111100 0"’ 00010110
01010100 10011010
11001100 11110010
11011111, (0011010 1],
Table 7. The result of transformation matrices between GF(2*) and GF((2*)?).

s Tiantinem Mane: | None-zaro Conttant 5 8im Iinplenvendation | 5-Blox Sy Analpiic |
{luatrromtan [Stancled]

Siareded Baon |
Taverse \Decomposiiton Ireatreni bnio
.+ p— . AND Catas:
Rule: (21341 Resilis: j‘,‘mfde! i = 266
Choese: [Type 1: (A+B)C+D+E)+HF - dalary= 5
o ) ~ | XOR Gams:
[ 7| mm=gsz
(1. 2 2 B8 92 128 dolay=20
2y |1 2 2 g 64 32 Multipfir Infa.
3 2 2 16 64 8 AND Gates:
@ 1 2 & 15 [T i = 64
(5|1 4 2 4 2 64 dalay=1
(6] |1 4 2 16 32 4 XOR Cates:
(711 8 2 4 8 128 num = 145
# | 8 4 8 6 2 v | délay=5

Wenghtwdd  Comatedl Dedored - Bowed ia Lovere . KO0F (Wetght ComniDelari(L 0005 #OGT00; DodE 1)

Fig. 5. The interface of CAD tool
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Because various parameters provide VLSI's outputs with huge variation and it's seem
impossible to run all parameters, we should provide engineers a CAD tool to obtain the
analyzed algorithm and results. In Fig. 5, a designer can use a CAD with Windows interface to
find better parameters of S-box. In this CAD, it provides the complexity information of the
multipliers or the inverse in GF(2*) . In this figure, designer chooses the fourth result, and the

estimative complexity of inverse is shown in the top right of the figure; that the choice of
multiplier is shown under the inverse information. Therefore, the CAD tool helps designer to
choose the better parameters efficiently.

6. Summary

In this chapter, we introduce the common concepts of finite field regarding its applications in
error correcting coding, cryptography, and others, including the mathematical background,
some important designs for multiplier and inversion, and the idea to utilize the computer-
aided functions to find better parameters for IP or system design. The summary of this chapter
is as follows:

1. Introducing the basic finite field operations and their hardware designs: Those common
operations include addition, multiplication, squaring, inversion, basis transformation, and so
on. The VLSI designs of those operations may be understood through the mathematical
background provided in Section 2. From the mathematical background, one should realize the
benefits and the processes of the transformation between two isomorphic finite fields.

2. Using some techniques to simplify the circuits: We have introduced some useful techniques
to reduce the area cost in VLSI design, such as the resource-sharing method, utilization of
different parameters, or use some isomorphic field to substitute the used field. The first
technique is widely used in various design stages. The later two techniques depend on the
parameters used. Different parameters lead to different hardware implementation results.
However, it seems infeasible to analyze all possible parameters manually.

3. Using the composite field inversion: Composite field inversion is used in the finite field
inversion due to its superiority in hardware implementation. The main idea is to consider the
use of intermediate fields and decompose the inversion on the original field into several
operations on smaller fields. This method has been used in the AES S-box design to minimize
the area cost.

4. Calculating the transformation matrices between isomorphic finite fields. It is well known
that finite fields of the same order are isomorphic, and this implies the existence of
transformation matrices. Finding the optimal one is important in the investigation of the VLSI
designs. Two methods are presented; one is to change the relation polynomial, and the other is
to use the composite field. An algorithm to calculate the transformation matrices is provided in
Section 5, and it can be used to find the optimal one.

5. Using the computer-aided design to search for better parameters: A good hardware CAD
tool provides fast search and enough information for designer, because it brings fast and
accurate designs. In Section 5, the computer-aided function based on the proposed algorithms
is one of the examples. When the order of the finite field gets large, the number of isomorphic
field increases rapidly. This makes it almost impossible to do the exhausting search, and the
proposed CAD can be used to support engineers to get the best choices.
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7. Conclusion

In this chapter, we use the concept of composite fields for the CAD designs, which can
support the VLSI designer to calculate the optimal parameters for finite field inversion.
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