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1. Introduction 
 

The computer industry has entered a stage of unprecedented improvement in CPU 
performance. However, the speed of file system management of huge information is 
commonly considered as the main factor that affects the computer performance; for 
example, the I/O bandwidth is limited by magnetic disks. The capacity and cost of magnetic 
disks per megabyte have been continually improved, but the rotation speed and seek time 
are improved very slowly. Recently, many computers have become I/O bound in the 
applications of video, audio, commercial database, etc. If such an I/O crisis can be resolved, 
the computer system performance will be improved. In 1988, Patterson et al. proposed the 
redundant array of independent disks (RAID) system which allows the data to be separated 
into several disks (Patterson et al., 1988). We can access the data in parallel so that the 
throughput of I/O systems will be improved. On the other hand, more disks in RAID 
system have a higher risk of losing data because of high component failure rates. As a result, 
the safety and reliability have become the major issues in the RAID system. 
When designing a highly available and reliable RAID system, the method of bit wise parity 
checking is mostly used to correct errors and to enhance reliability of the RAID system. 
However, the parity checking method is limited so that only single disk failure can be 
tolerated. In 1995, Blaum et al. proposed a method called even-odd code, which tolerates up 
to two disk failures in the RAID system (Blaum et al., 1995). Even-odd code is the first 
known scheme for tolerating single or double disk failures, providing an optimal solution 
with regard to both storage and performance. However, the major problem concerning the 
even-odd code is a variety of modes of operations when solving erasures or up to 2 disk 
failures. In practical, it is not easy to be integrated into a VSLI. On the other hand, a small 
write problem is difficult to be solved with the even-odd code (Liao & Jing, 2002). 
In 1997, Plank proposed a tutorial by using the Reed-Solomon (RS) code to provide error 
correction in the RAID system (Plank, 1997). In 2000, Jing et al. also proposed a simple 
algorithm, called RS-RAID system, to combine the RS codes with the RAID system (Jing et al. 
2000). In this chapter, we aim to improve RS codes codec to design a fast error and erasure 
correction for RS-RAID system, and to solve the small write problem in RS codes. In a RS 
decoder, there are various algorithms to solve the error locator polynomial, which affect the 
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complexity and performance in hardware design such as the Berlekam-Massey algorithm, 
Euclidean algorithm, and Peterson-Gorenstein-Zierler (PGZ) algorithm (Wicker, 1995). The 
PGZ algorithm is mostly applied to correct less than six or seven errors because it is very 
simple with enhanced error tolerant capability. This chapter contributes to simplify the PGZ 
algorithm for single error or double erasure disks correction in the RS-RAID system by 
using the support of a set of combinational circuits. Its error and erasure correction become 
faster without the use of Chien search to find the root of the error locator polynomial, as 
well as the Forney method to find the error magnitudes from evaluator polynomial. Hence, 
this straightforward algorithm is then suitable for VLSI design. 
This chapter is organized as follows: The history of RAID system is presented in Section 2. 
The simple RS encoder and decoder are described in Section 3. The design of small write 
modules of RS-RAID system is shown in Section 4. The RS-RAID system is proposed in 
Section 5. Finally, the result and conclusion are given in Section 6. 

 
2. The Redundant Array of Independent Disks 
 

A landmark paper, titled “A case for redundant arrays of inexpensive disks (RAID)”, was 
presented by Patterson, Katz and Gibson in 1988 (Patterson et al., 1988). RAID systems can 
be configured into various ways to get a compromised result on data access speed, system 
reliability and size of storage. The general trade-off is to increase data access speed by 
writing the data into more places, which increases the amount of storage available by a 
factor N. On the other hand, more disks cause lower reliability on the disk system, leading 
to data redundancy and the need for additional algorithms to enhance the reliability of 
valuable data. There are several levels in the RAID system, such as RAID-0, RAID-1, RAID-
10, RAID-2, RAID-3, RAID-4, RAID-5, RAID-6, and RAID-7. The mostly used versions for 
the trade-off are RAID-0, RAID-10, RAID-5, and RAID-6. 

 
2.1 The RAID-0 
RAID-0, as shown in Fig. 1, strips all data across multiple drives in a disk array. This is a 
high I/O performance solution, since it can simultaneously support many small/individual 
and large means of access with all disks transferring in parallel. Thus, very high data 
transfer rates (both reads and writes) may be achieved. RAID-0 is very suitable for I/O time 
critical or real time applications, such as video on demand (VoD) systems. However, RAID-
0 maximizes the access speed and space available while being low in reliability. Because 
RAID-0 provides no data protection, the probability of disk failure increases with increasing 
number of disk drives. Any failing single drive will break the entire disk array. 

 
Fig. 1. The hierarchy of RAID-0 

2.2 The RAID-1 
RAID-1 writes data to two drives simultaneously in a replicated way, as shown in Fig. 2. If 
one drive fails, the data can still be retrieved from the counterpart of the RAID set. This 
process is also called “disk mirroring”. Mirroring refers to the 100% duplication of data from 
one disk to another so that it is the most expensive RAID (double hardware storage 
required). It offers the advantage in reliability only. RAID-1 increases the reliability of 
protection of single disk failure, but doubles the cost for the available storage. RAID-1 is 
very suitable for both reliability and performance applications, such as OS disk and 
accountant data. 

 
Fig. 2. The hierarchy of RAID-1 

 
2.3 The RAID-10 
RAID-10 is a combination of RAID-0 and RAID-1, where the data are striped and mirrored 
as shown in Fig. 3. This provides a higher speed and reliability, but possesses the same cost 
problem as RAID-1. Again, it can only tolerate single disk failure in each disk pair. 

RAID  Controller

Host
Command

RAID 1+0
read
write

 
Fig. 3. The hierarchy of RAID-10 

 
2.4 The RAID-5 
RAID-5 uses a parity encoder to produce parity information and to provide data recovery at 
a low cost. The architecture of RAID-5 is shown in Fig. 4. Although one disk is added, data 
are striped over all disks so that large files can be fetched with high bandwidth. To balance 
the disk access load, a rotating parity is used. Many small random blocks can be accessed in 
parallel without hot spots/bottlenecks in any single disk. When a single disk fails, the data 
can still be reconstructed from the parity information. 
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2.3 The RAID-10 
RAID-10 is a combination of RAID-0 and RAID-1, where the data are striped and mirrored 
as shown in Fig. 3. This provides a higher speed and reliability, but possesses the same cost 
problem as RAID-1. Again, it can only tolerate single disk failure in each disk pair. 
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2.4 The RAID-5 
RAID-5 uses a parity encoder to produce parity information and to provide data recovery at 
a low cost. The architecture of RAID-5 is shown in Fig. 4. Although one disk is added, data 
are striped over all disks so that large files can be fetched with high bandwidth. To balance 
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Fig. 4. The hierarchy of RAID-5 

 
2.5 The RAID-6 
Fig. 5 shows the model of RAID-6. RAID-6 is different from RAID-5 as it has two additional 
disks to recover the loss of two disks. This capability provides a higher fault tolerant 
capacity for disk array. The popular techniques for RAID-6 are even-odd and RS codes, 
which will be discussed later. 

 
Fig. 5. The hierarchy of RAID-6 

 
3. The Design of Reed-Solomon Codes for Error and Erasure Correction 
 

The RS codes have been widely used in error control coding, especially in the applications of 
communication, satellite, and storage (Wicker, 1994). The RS codes have maximum distance 
separable (MDS) and hence can extend the largest possible minimum distance for codes of 
their size and dimension. In addition, RS codes are good at correcting burst errors. In the 
following, we discuss the basic definition of the encoder and illustrate those algorithms to 
correct one error or two erasure conditions using the PGZ algorithm (Wicker, 1995). 

 
3.1 The Reed-Solomon Codes Encoder 
The (n, k) RS codes over GF(2m) have the capability to correct knt 2  erasures or t errors, 
where n is the total length of a codeword, k is the number of information symbols in GF(2m), 
and t is the number of errors that the RS codes can correct. Consider the construction of a t-
error-correcting RS code with a length of 12 m . 2t consecutive powers of   are required as 

zeros of the generator polynomial g(x) for the t-error-correcting RS code. The generator 
polynomial is the production of the associated minimal polynomials: 





t

j

mj GFxxg
2

1

)2( for ),()(  . 
(1) 

We define each codeword as a polynomial 1
110)( 

 n
n xcxccxC  . Let a message 

polynomial can be expressed in terms of 1
110)( 

 k
k xixiixI  . The I(x) can be divided by 

a generator polynomial g(x) to obtain the remainder polynomial d(x), such that an encoded 
codeword is 

)()()( 2 xdxxIxC t  . (2) 

 
3.2 The Reed-Solomon Codes Decoder 
Since the discovery of RS codes, the efficient decoding algorithm has been highly used for 
the high-speed data process. Peterson provided the first decoding algorithm for binary BCH 
codes (Peterson, 1960). Then Peterson’s algorithm was improved and extended to non-
binary codes by Gorenstein and Zierler (Gorenstein & Zierler, 1961), Chien (Chien, 1964), 
and Forney (Forney, 1965). In the following, we discuss how to solve two erasures or one 
error using the PGZ algorithm, and propose a fast error and erasure correction algorithm 
based on the PGZ algorithm. From the example, further design for tolerating more errors or 
erasures may be developed when needed. 

 
3.2.1 The Syndrome Evaluation Algorithm 
The syndrome evaluation is the first procedure in the error detection. Assume that a 
received codeword polynomial 1

110)( 

 n
n xrxrrxR   can be expressed in terms of the 

sum of the codeword polynomial C(x) and the error polynomial n
nxexeexe  10)( , 

denoted as 
)()()( xexCxR  , (3) 

and the syndromes are 
tkeCRxS kkk

k 21 for )()()()(   . (4) 
The k  is the root of C(x), so 0)( kC  ; consequently, the syndrome is actually a form of 
evaluation for the error pattern e(x). If there is an error e(x), the syndrome will be nonzero. 

 
3.2.2 The Design of Single Random Error Correction 
In the applications of high speed storage, the requirement for single random error or double 
erasure correction is commonly applied. The PGZ algorithm is applied to find the error 
locator polynomial t

txxx   11)( . We represent the syndromes with t errors in the 
received word as follows: 

tkXYS
t

i

k
iik 21 for ,

1




, 
(5) 

where Xi is the error locator for the ith error and Yi is the magnitude of the ith error. If a 
random error ei has been introduced into the received word as iii ecr  , the syndromes 
from equation (4) can be represented as 
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i
ieRS   )(1  (6) 

and 
i

ieRS 22
2 )(   . (7) 

From equations (6) and (7), the ei can directly affect the syndromes S1 and S2. With single 
error, the error magnitude ei is substituted by Yi and the error location i  is substituted by 
Xi. Rearranging the equations (6) and (7), we have 

ii XYS 1  (8) 
and 

2
2 ii XYS  . (9) 

Finally, the direct solution of the error location Xi and magnitude Yi are obtained from 
equations (8) and (9) as 

1
12

1

2  SS
S
SX i  

(10) 

and 
1

2
2
1

2

2
1  SS

S
SYi . 

(11) 

 
3.2.3 The Design of Single or Double Erasure Correction 
In the definition, the erasure means that the error location has been known. Starting from 
the case of double erasures, we assume those magnitudes as Yi and Yj, on the ith and jth 
locations in the codeword, respectively, and the effected syndromes are 

j
j

i
i YYS  1  (12) 

and 
j

j
i

i YYS 22
2   . (13) 

By solving equations (12) and (13), the magnitudes can be obtained from the syndromes as 

)(2
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
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
  

(14) 
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)(2
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jij

i

j

SSY






 . 

(15) 

In the event of one erasure error, 0iY  and 0jY ; the syndromes become i
iYS 1  and 

i
iYS 2

2  . We obtain the location or Yi as 

iii

SSY
 




2
21 . 

(16) 

For this event, we can also use the same equation of solving double erasure errors by setting 
0jY  and 0j , such that 1j ; therefore, equation (16) can be substituted by equation 

(14). Thus, only one set of erasure module is needed. 

 
 
 

4. The Design of Reed-Solomon Codes with Small Write Capability 
 

In the design of highly reliable systems for banks, stock markets and hospitals, RAID-6 
systems are normally applied. A problem that will affect the system is the frequent 
transactions or updating of data/information. Those frequent writing is a small amount of 
bytes compared with a block of record in kilo-bytes. This is called the small write problem 
which is an important factor that influences the performance of a RAID system. The small 
write problem is caused by the frequent modifications of partial codewords, and the parity 
bytes of each codeword also need to be updated. In other words, to update the parities, 
block data reading is needed for the task of partial data updating in RAID systems. 
As shown in Fig. 6, in the RAID-5, assume the D0 is modified, so that the parity should be 
updated, too. For example, an inefficient method fetches the unused/whole data and 
encodes them again, causing a great delay and a serious problem on writing a small amount 
of data. Another smart algorithm is as follows: first, read the old D0 and old parity P and 
then perform exclusive-OR operation with the new data D0’ to obtain the new party P’. 
Second, write the new data D0’ and new parity P’ back. In this proposed algorithm, we need 
2 reads and 2 writes operation to update D0. 

 
Fig. 6. The data updating for single parity
 
On the other hand, the RAID-6 systems have 2 parities, and the modification of parities 
might need to fetch a block of data to calculate the new parity. This is another inefficient 
method that fetches more data and performs encoding again. The proposed algorithm has 
limited times of access so that only the changed data can be read and the calculation of the 
parities is performed, such as the 0c  and 1c , which may be different from the original c0 and 
c1 in the encoder. Since the advance of VLSI, the proposed IP has absolutely become a 
combinational circuit to perform the calculation which will provide a high speed 
performance in the case of low delay and a simple interface to the current RAID systems, as 
presented in the following sections. 

 
4.1 The Algorithm of Small Write Encoder 
Regarding RS-RAID, according to the design of RS codes in Section 3.1, if a symbol/data in 
a set of codeword C(x) has been modified, the original parity symbols c0 and c1 have to be re-
encoded. Assuming the new symbol )(xCci  , where ki 2 , is an updated parity in the 
codeword C(x). Take ic  as the coefficient of the new input, the encoder should generate the 
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0jY  and 0j , such that 1j ; therefore, equation (16) can be substituted by equation 

(14). Thus, only one set of erasure module is needed. 

 
 
 

4. The Design of Reed-Solomon Codes with Small Write Capability 
 

In the design of highly reliable systems for banks, stock markets and hospitals, RAID-6 
systems are normally applied. A problem that will affect the system is the frequent 
transactions or updating of data/information. Those frequent writing is a small amount of 
bytes compared with a block of record in kilo-bytes. This is called the small write problem 
which is an important factor that influences the performance of a RAID system. The small 
write problem is caused by the frequent modifications of partial codewords, and the parity 
bytes of each codeword also need to be updated. In other words, to update the parities, 
block data reading is needed for the task of partial data updating in RAID systems. 
As shown in Fig. 6, in the RAID-5, assume the D0 is modified, so that the parity should be 
updated, too. For example, an inefficient method fetches the unused/whole data and 
encodes them again, causing a great delay and a serious problem on writing a small amount 
of data. Another smart algorithm is as follows: first, read the old D0 and old parity P and 
then perform exclusive-OR operation with the new data D0’ to obtain the new party P’. 
Second, write the new data D0’ and new parity P’ back. In this proposed algorithm, we need 
2 reads and 2 writes operation to update D0. 

 
Fig. 6. The data updating for single parity
 
On the other hand, the RAID-6 systems have 2 parities, and the modification of parities 
might need to fetch a block of data to calculate the new parity. This is another inefficient 
method that fetches more data and performs encoding again. The proposed algorithm has 
limited times of access so that only the changed data can be read and the calculation of the 
parities is performed, such as the 0c  and 1c , which may be different from the original c0 and 
c1 in the encoder. Since the advance of VLSI, the proposed IP has absolutely become a 
combinational circuit to perform the calculation which will provide a high speed 
performance in the case of low delay and a simple interface to the current RAID systems, as 
presented in the following sections. 

 
4.1 The Algorithm of Small Write Encoder 
Regarding RS-RAID, according to the design of RS codes in Section 3.1, if a symbol/data in 
a set of codeword C(x) has been modified, the original parity symbols c0 and c1 have to be re-
encoded. Assuming the new symbol )(xCci  , where ki 2 , is an updated parity in the 
codeword C(x). Take ic  as the coefficient of the new input, the encoder should generate the 

www.intechopen.com



Data Storage100

correspondence parity symbols 0c  and 1c  to construct a new set of codeword from the 
original parity symbols c0 and c1. The fast algorithm is explained as follows. 
First, the codeword C(x) can be expressed in terms of 
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We also know the c0 and c1 are parity check symbols, thus the equations (17) and (18) can be 
expressed in terms of 
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where j is the index or the location, cj is the original coefficient and jc  is the new coefficient 
of the updated codeword. 
Secondly, the new coefficients 0c  and 1c  can be expressed in terms of the equations 

000  cc  and 111  cc . In a similar manner, jjj cc  , where j  stands for the 
differences between the original and new coefficients of the jth symbol in the codeword. 
Since j  is known, we need to solve 0  and 1  so that we can substitute 0 , 1  and j  
into equations (19) and (20); therefore, we have 
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To solve the 0  and 1 , subtract equation (19) from equation (21) and use the same way on 
equations (20) and (22); we obtain 
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From the equations (23) and (24), it is found that we do not need the whole codeword to 
generate the new set of parity symbols. This is the key to calculate the new parity symbols 
on line. To solve 0  and 1 , the set of equations in equations (23) and (24) can be solved 
simultaneously, and we have 
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Finally, the new parity check coefficient 1c  can be expressed in terms of 
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Extending this representation to the new parity check coefficient 0c , we obtain 
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This proves the decoder without a sequential stream of data. If all the elements are over 
GF(28), equations (26) and (27) can be rearranged to obtain 

1
2292

1 ))(( cccc jj
jj    (28) 

and 
0

2302
0 ))()(( cccc jjj

jj   . (29) 
By observing equations (28) and (29), we have a combinational circuit to construct a VLSI 
module to finally realize this function. 
 
5. The RS-RAID System Design 
 

Based on the explanations in Sections 3 and 4, the basic modules of RS codes are included to 
develop a reliable disk system, or RS-RAID system. The RS-RAID system design not just 
tolerates up to two or more disks failure but also corrects error(s) and erasures 
transparently. Transparency features high speed and real-time processes without 
complicated software control. This section will discuss the design of this RS-RAID system 
from its operation to system architecture. 

 
5.1 System Design 
In regard to modern mass storage systems, there are usually ten or more disks in the RAID 
system with less reliability or a higher risk of data loss. A reliable storage system must 
satisfy the following requirements: 
1. High-performance disk failure recovery: It not just features high-speed access but also 
tolerates up to two or more disks failure. 
2. Low recovery time: When one or more disks are not returning data within a limited 
period of time, the system control assumes that the disk(s) is/are slow disk(s) and solves its 
original information from the existing data/codeword. This strategy must be realized with 
low access or recovery time and speed up the system performance. 
3. High confidence on individual disk: The disk can identify whether its data are reliable or 
not. 
Aiming to meet the above requirements, we first use CRC 32 as part of the major checking 
data to judge the health of data disks. The rate of miss checking using CRC 32 is 
comparatively low. Secondly, a Reed-Solomon Product Code (RS-PC) is proposed with the 
support of CRC 32 checking bits to construct a highly reliable RS-RAID. The RS-PC is a 
combination of two (n, k) RS codes, denoted by inner-codes Crow and outer-codes Ccol. The 
Crow and Ccol codes are presented as the parity symbols of line blocks in row and column 
directions, as shown in Fig. 7. The codes Crow and Ccol are combined for double protection, 
which is a “check-on-check” of the RS-PC to enhance the error-correcting capability. Since 
the two parity symbols are utilized as the line blocks in rows and columns, the architecture 
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correspondence parity symbols 0c  and 1c  to construct a new set of codeword from the 
original parity symbols c0 and c1. The fast algorithm is explained as follows. 
First, the codeword C(x) can be expressed in terms of 
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where j is the index or the location, cj is the original coefficient and jc  is the new coefficient 
of the updated codeword. 
Secondly, the new coefficients 0c  and 1c  can be expressed in terms of the equations 

000  cc  and 111  cc . In a similar manner, jjj cc  , where j  stands for the 
differences between the original and new coefficients of the jth symbol in the codeword. 
Since j  is known, we need to solve 0  and 1  so that we can substitute 0 , 1  and j  
into equations (19) and (20); therefore, we have 
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To solve the 0  and 1 , subtract equation (19) from equation (21) and use the same way on 
equations (20) and (22); we obtain 
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From the equations (23) and (24), it is found that we do not need the whole codeword to 
generate the new set of parity symbols. This is the key to calculate the new parity symbols 
on line. To solve 0  and 1 , the set of equations in equations (23) and (24) can be solved 
simultaneously, and we have 
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Extending this representation to the new parity check coefficient 0c , we obtain 
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This proves the decoder without a sequential stream of data. If all the elements are over 
GF(28), equations (26) and (27) can be rearranged to obtain 
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and 
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jj   . (29) 
By observing equations (28) and (29), we have a combinational circuit to construct a VLSI 
module to finally realize this function. 
 
5. The RS-RAID System Design 
 

Based on the explanations in Sections 3 and 4, the basic modules of RS codes are included to 
develop a reliable disk system, or RS-RAID system. The RS-RAID system design not just 
tolerates up to two or more disks failure but also corrects error(s) and erasures 
transparently. Transparency features high speed and real-time processes without 
complicated software control. This section will discuss the design of this RS-RAID system 
from its operation to system architecture. 

 
5.1 System Design 
In regard to modern mass storage systems, there are usually ten or more disks in the RAID 
system with less reliability or a higher risk of data loss. A reliable storage system must 
satisfy the following requirements: 
1. High-performance disk failure recovery: It not just features high-speed access but also 
tolerates up to two or more disks failure. 
2. Low recovery time: When one or more disks are not returning data within a limited 
period of time, the system control assumes that the disk(s) is/are slow disk(s) and solves its 
original information from the existing data/codeword. This strategy must be realized with 
low access or recovery time and speed up the system performance. 
3. High confidence on individual disk: The disk can identify whether its data are reliable or 
not. 
Aiming to meet the above requirements, we first use CRC 32 as part of the major checking 
data to judge the health of data disks. The rate of miss checking using CRC 32 is 
comparatively low. Secondly, a Reed-Solomon Product Code (RS-PC) is proposed with the 
support of CRC 32 checking bits to construct a highly reliable RS-RAID. The RS-PC is a 
combination of two (n, k) RS codes, denoted by inner-codes Crow and outer-codes Ccol. The 
Crow and Ccol codes are presented as the parity symbols of line blocks in row and column 
directions, as shown in Fig. 7. The codes Crow and Ccol are combined for double protection, 
which is a “check-on-check” of the RS-PC to enhance the error-correcting capability. Since 
the two parity symbols are utilized as the line blocks in rows and columns, the architecture 
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of RS-RAID is then partitioned into dual levels, namely the system level and disk level, as 
shown in Fig. 8. 

 
Fig. 7. The format of Reed-Solomon product code
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Fig. 8. The architecture of RS-RAID
 
In this design, all disks are considered as large logical/unified storage. The host can access 
the data in RS-RAID through the IDE or SCSI interface. At the system level, there are n disks, 
and all data are encoded and decoded by L1 (level one) RS-code codec through the PC 
interface. This design guarantees the reliability of data reading from the large logical disk. 
System Cache memory, which temporarily stores the data encoded from L1 RS-code codec, 
is used to buffer the currently used data. Cache buffer will improve the RS-RAID 
performance in frequent access to/from the system. 
At the disk level, each disk has n stripes space. When the data are read from a disk, they are 
decoded by L2 (level two) RS-code codec and then checked by CRC 32 codec. If the amount 

of errors is too many for the correcting capability of L2 RS-code codec, this situation will be 
detected by CRC 32 codec. This guarantees the data reading from individual disk in a 
reliable condition. This system has advantages such as high capacity, throughput and 
reliability, because all encoding/decoding processes are operating in real time. 

 
5.2 System Operation 
For easier explanations, the operation of the system is based on the concept of the error 
correction design. The operations in dual levels can enhance the system reliability and 
increase the number of errors tolerated in the system. 

 
5.2.1 The System Level 
At the system level, the L1 RS-code codec can be partitioned into the encoder and the 
decoder parts, as shown in Fig. 9. When bulk write from the host is performed, the 
information of stripe u can be expressed in terms of },,,{)( 021 iiixI kku   and encoded into a 
inner-code },,,{)( 0,2,1, ununucow cccxC

u
  for each tripe of data, where nu 0 , n is the 

number of total disks in system, and k is the number of data disks. When the frequently 
rewritten data are sent to the system cache sequentially from the host, the 0c  and 1c  become 
new parity symbols and must be updated in real time, as shown in Fig. 9. 
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Fig. 9. The RS codes codec block diagram of system level
 
Before being written back to disks, all data are temporarily stored into system cache. During 
write back, the data are firstly encoded into the outer-code },,,{)( ,0,2,1 vvnvncol cccxC

v
  for 

each disk, where nv 0 , and n is the stripes of a disk. 
When read from an unreliable disk or communication channel, the received data from disk 

},,,{)( 021 RRRxR nndisk   are decoded into },,,{)( 021 IIIxI nndisk   and stored as inner-code 
Crow in system cache. When read from cache, the inner-code Crow can be represented in terms 
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of RS-RAID is then partitioned into dual levels, namely the system level and disk level, as 
shown in Fig. 8. 
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In this design, all disks are considered as large logical/unified storage. The host can access 
the data in RS-RAID through the IDE or SCSI interface. At the system level, there are n disks, 
and all data are encoded and decoded by L1 (level one) RS-code codec through the PC 
interface. This design guarantees the reliability of data reading from the large logical disk. 
System Cache memory, which temporarily stores the data encoded from L1 RS-code codec, 
is used to buffer the currently used data. Cache buffer will improve the RS-RAID 
performance in frequent access to/from the system. 
At the disk level, each disk has n stripes space. When the data are read from a disk, they are 
decoded by L2 (level two) RS-code codec and then checked by CRC 32 codec. If the amount 

of errors is too many for the correcting capability of L2 RS-code codec, this situation will be 
detected by CRC 32 codec. This guarantees the data reading from individual disk in a 
reliable condition. This system has advantages such as high capacity, throughput and 
reliability, because all encoding/decoding processes are operating in real time. 

 
5.2 System Operation 
For easier explanations, the operation of the system is based on the concept of the error 
correction design. The operations in dual levels can enhance the system reliability and 
increase the number of errors tolerated in the system. 

 
5.2.1 The System Level 
At the system level, the L1 RS-code codec can be partitioned into the encoder and the 
decoder parts, as shown in Fig. 9. When bulk write from the host is performed, the 
information of stripe u can be expressed in terms of },,,{)( 021 iiixI kku   and encoded into a 
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number of total disks in system, and k is the number of data disks. When the frequently 
rewritten data are sent to the system cache sequentially from the host, the 0c  and 1c  become 
new parity symbols and must be updated in real time, as shown in Fig. 9. 
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Fig. 9. The RS codes codec block diagram of system level
 
Before being written back to disks, all data are temporarily stored into system cache. During 
write back, the data are firstly encoded into the outer-code },,,{)( ,0,2,1 vvnvncol cccxC

v
  for 

each disk, where nv 0 , and n is the stripes of a disk. 
When read from an unreliable disk or communication channel, the received data from disk 

},,,{)( 021 RRRxR nndisk   are decoded into },,,{)( 021 IIIxI nndisk   and stored as inner-code 
Crow in system cache. When read from cache, the inner-code Crow can be represented in terms 

www.intechopen.com



Data Storage104

of stripe },,,{)( 0,2,1, ununustripe rrrxR
u

 , where nu 0 , and n is the total number of disks. 
Decoding )(xRstripe , from the previous research in (Jing et al. 2001), the procedure is as 
follows: 
A. )(xR

ustripe  is firstly sent to the error corrector and generates its syndromes S1 and S2 for 
error checking and correction purposes. 
B. When a random error occurs, the corrector will use the syndromes to calculate its 
magnitude Yi on position Xi. 
C. With erasure(s), the corrector firstly sets one or both of Xi and Xj as the already known 
position(s) of erasure(s) to solve their correlated error magnitudes Yi and Yj. 
When an error or erasure(s) is found, the corrector will correct the )(xR

ustripe  using S1 and S2 
immediately after completion of reading. The timing of this procedure is shown in Fig. 10. 
With such high-speed correction, we consider this operation as a real-time correction 
process. 

 
Fig. 10. The RS codes codec block diagram of system level

 
5.2.2 The Disk Level 
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Fig. 11. The RS codes codec block diagram of system level 
 
At the disk level as shown in Fig. 11, when the bulks are written from cache into disks, the 
encoding procedure at the disk level is as follows: 
1. The data },,,{)( 021 IIIxI nndisk   in cache is written into disks. 

2. Each disk receives its own data I which is then encoded by CRC 32 codec. 
3. The encoded data stream from CRC 32 codec are encoded again by L2 RS-codes codec and 
stored in the disks. 
Thus, the RS-PC encoding is finished. 
When a system reads data from disks into cache, all data will be checked by CRC 32 codec 
and decoded by L2 RS-codes codec. The decoding procedure at the disk level is as follows: 
1. The data in each disk are decoded and corrected by its own L2 RS-codes codec. 
2. The decoded data stream from each L2 RS-codes codec are decoded again by its own CRC 
32 codec. 
Finally, if the quantity of errors is greater than the error-correcting capacity of L2 RS-codes 
codec, the CRC 32 codec can detect the errors and report to the system level, so this disk is 
marked as an erasure at the system level. This strategy will enhance the system reliability 
and increase the data access speed with less possibility to retry failure disk(s). This design 
provides support of double protection for the RAID system in real time. 

 
6. Conclusion 
 

This paper provides an example of coding to implement a RS code in redundant array of 
independent disks system in correcting single random error and double erasures. There are 
new directions such as the small write module and higher correction capabilities for the 
design of a RS-RAID system. As a result, the proposed RS-RAID system has the following 
advantages: 
1. Expandable design: As the design of RAID-6, this paper does not only propose a solution 
for dual disks failure, but also adopt the PGZ algorithm to correct less than six or seven 
errors.  
2. Integrated concept: This system presents a unified RSPC concept to partite the system into 
dual levels of abstract/structure. Thus, the modules at the disk level mainly deal with burst 
or random errors in disks, and the control of the system level does the correction for 
multiple failures of the system. On the other hand, each disk may be a surface of disk so that 
a fault tolerant hard disk is produced. 
3. Real-time updating capability: In regard to the applications for banks, stock markets, 
hospitals or military purposes, the system requires frequent transactions or updating of 
data/information. The small write module may support the system cache with a real time 
requirement and solve the frequent update operations in the RAID system with very low 
overhead. 
4. Suitability for co-design: The proposed algorithm is suitable for both hardware and 
software designs of the modules in the applications of RS codes by using the finite field. The 
math of finite field belongs to modern algebra which has been largely applied to the 
applications of error correction code and cryptography. This suggests that the hardware 
modules will be integrated into the math processor in CPU of the future versions. The 
reliable control may be easily integrated into microcontrollers and general processors.  
5. More applications: With the advantages from the expandability to the co-design of the 
system, this concept may extend its applications to most memory systems such as the flash 
memory, DRAM, and so on. 
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of stripe },,,{)( 0,2,1, ununustripe rrrxR
u

 , where nu 0 , and n is the total number of disks. 
Decoding )(xRstripe , from the previous research in (Jing et al. 2001), the procedure is as 
follows: 
A. )(xR

ustripe  is firstly sent to the error corrector and generates its syndromes S1 and S2 for 
error checking and correction purposes. 
B. When a random error occurs, the corrector will use the syndromes to calculate its 
magnitude Yi on position Xi. 
C. With erasure(s), the corrector firstly sets one or both of Xi and Xj as the already known 
position(s) of erasure(s) to solve their correlated error magnitudes Yi and Yj. 
When an error or erasure(s) is found, the corrector will correct the )(xR

ustripe  using S1 and S2 
immediately after completion of reading. The timing of this procedure is shown in Fig. 10. 
With such high-speed correction, we consider this operation as a real-time correction 
process. 

 
Fig. 10. The RS codes codec block diagram of system level

 
5.2.2 The Disk Level 
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Fig. 11. The RS codes codec block diagram of system level 
 
At the disk level as shown in Fig. 11, when the bulks are written from cache into disks, the 
encoding procedure at the disk level is as follows: 
1. The data },,,{)( 021 IIIxI nndisk   in cache is written into disks. 

2. Each disk receives its own data I which is then encoded by CRC 32 codec. 
3. The encoded data stream from CRC 32 codec are encoded again by L2 RS-codes codec and 
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When a system reads data from disks into cache, all data will be checked by CRC 32 codec 
and decoded by L2 RS-codes codec. The decoding procedure at the disk level is as follows: 
1. The data in each disk are decoded and corrected by its own L2 RS-codes codec. 
2. The decoded data stream from each L2 RS-codes codec are decoded again by its own CRC 
32 codec. 
Finally, if the quantity of errors is greater than the error-correcting capacity of L2 RS-codes 
codec, the CRC 32 codec can detect the errors and report to the system level, so this disk is 
marked as an erasure at the system level. This strategy will enhance the system reliability 
and increase the data access speed with less possibility to retry failure disk(s). This design 
provides support of double protection for the RAID system in real time. 

 
6. Conclusion 
 

This paper provides an example of coding to implement a RS code in redundant array of 
independent disks system in correcting single random error and double erasures. There are 
new directions such as the small write module and higher correction capabilities for the 
design of a RS-RAID system. As a result, the proposed RS-RAID system has the following 
advantages: 
1. Expandable design: As the design of RAID-6, this paper does not only propose a solution 
for dual disks failure, but also adopt the PGZ algorithm to correct less than six or seven 
errors.  
2. Integrated concept: This system presents a unified RSPC concept to partite the system into 
dual levels of abstract/structure. Thus, the modules at the disk level mainly deal with burst 
or random errors in disks, and the control of the system level does the correction for 
multiple failures of the system. On the other hand, each disk may be a surface of disk so that 
a fault tolerant hard disk is produced. 
3. Real-time updating capability: In regard to the applications for banks, stock markets, 
hospitals or military purposes, the system requires frequent transactions or updating of 
data/information. The small write module may support the system cache with a real time 
requirement and solve the frequent update operations in the RAID system with very low 
overhead. 
4. Suitability for co-design: The proposed algorithm is suitable for both hardware and 
software designs of the modules in the applications of RS codes by using the finite field. The 
math of finite field belongs to modern algebra which has been largely applied to the 
applications of error correction code and cryptography. This suggests that the hardware 
modules will be integrated into the math processor in CPU of the future versions. The 
reliable control may be easily integrated into microcontrollers and general processors.  
5. More applications: With the advantages from the expandability to the co-design of the 
system, this concept may extend its applications to most memory systems such as the flash 
memory, DRAM, and so on. 
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