960 research outputs found

    BiFeO3/La0.7Sr0.3MnO3 heterostructures deposited on Spark Plasma Sintered LaAlO3 Substrates

    Get PDF
    Multiferroic BiFeO3 (BFO) / La0.7Sr0.3MnO3 heterostructured thin films were grown by pulsed laser deposition on polished spark plasma sintered LaAlO3 (LAO) polycrystalline substrates. Both polycrystalline LAO substrates and BFO films were locally characterized using electron backscattering diffraction (EBSD), which confirmed the high-quality local epitaxial growth on each substrate grain. Piezoforce microscopy was used to image and switch the piezo-domains, and the results are consistent with the relative orientation of the ferroelectric variants with the surface normal. This high-throughput synthesis process opens the routes towards wide survey of electronic properties as a function of crystalline orientation in complex oxide thin film synthesis.Comment: 10 pages, 4 figures, Submitted to Applied Physics Letter

    On the origin of non-monotonic doping dependence of the in-plane resistivity anisotropy in Ba(Fe1xTx_{1-x}T_x)2_2As2_2, TT = Co, Ni and Cu

    Full text link
    The in-plane resistivity anisotropy has been measured for detwinned single crystals of Ba(Fe1x_{1-x}Nix_x)2_2As2_2 and Ba(Fe1x_{1-x}Cux_x)2_2As2_2. The data reveal a non-monotonic doping dependence, similar to previous observations for Ba(Fe1x_{1-x}Cox_x)2_2As2_2. Magnetotransport measurements of the parent compound reveal a non-linear Hall coefficient and a strong linear term in the transverse magnetoresistance. Both effects are rapidly suppressed with chemical substitution over a similar compositional range as the onset of the large in-plane resistivity anisotropy. It is suggested that the relatively small in-plane anisotropy of the parent compound in the spin density wave state is due to the presence of an isotropic, high mobility pocket of reconstructed Fermi surface. Progressive suppression of the contribution to the conductivity arising from this isotropic pocket with chemical substitution eventually reveals the underlying in-plane anisotropy associated with the remaining FS pockets.Comment: 12 pages, 9 figure

    A neutron scattering study of the interplay between structure and magnetism in Ba(Fe1x_{1-x}Cox_{x})2_2As2_2

    Full text link
    Single crystal neutron diffraction is used to investigate the magnetic and structural phase diagram of the electron doped superconductor Ba(Fe1x_{1-x}Cox_x)2_2As2_2. Heat capacity and resistivity measurements have demonstrated that Co doping this system splits the combined antiferromagnetic and structural transition present in BaFe2_2As2_2 into two distinct transitions. For xx=0.025, we find that the upper transition is between the high-temperature tetragonal and low-temperature orthorhombic structures with (TTO=99±0.5T_{\mathrm{TO}}=99 \pm 0.5 K) and the antiferromagnetic transition occurs at TAF=93±0.5T_{\mathrm{AF}}=93 \pm 0.5 K. We find that doping rapidly suppresses the antiferromagnetism, with antiferromagnetic order disappearing at x0.055x \approx 0.055. However, there is a region of co-existence of antiferromagnetism and superconductivity. The effect of the antiferromagnetic transition can be seen in the temperature dependence of the structural Bragg peaks from both neutron scattering and x-ray diffraction. We infer from this that there is strong coupling between the antiferromagnetism and the crystal lattice

    Homogeneous nucleation of colloidal melts under the influence of shearing fields

    Full text link
    We study the effect of shear flow on homogeneous crystal nucleation, using Brownian Dynamics simulations in combination with an umbrella sampling like technique. The symmetry breaking due to shear results in anisotropic radial distribution functions. The homogeneous shear rate suppresses crystal nucleation and leads to an increase of the size of the critical nucleus. These observations can be described by a simple, phenomenological extension of classical nucleation theory. In addition, we find that nuclei have a preferential orientation with respect to the direction of shear. On average the longest dimension of a nucleus is along the vorticity direction, while the shortest dimension is preferably perpendicular to that and slightly tilted with respect to the gradient direction.Comment: 10 pages, 8 figures, Submitted to J. Phys.: Condens. Matte

    Transverse Momentum Correlations in Relativistic Nuclear Collisions

    Full text link
    From the correlation structure of transverse momentum ptp_t in relativistic nuclear collisions we observe for the first time temperature/velocity structure resulting from low-Q2Q^2 partons. Our novel analysis technique does not invoke an {\em a priori} jet hypothesis. ptp_t autocorrelations derived from the scale dependence of fluctuations reveal a complex parton dissipation process in RHIC heavy ion collisions. We also observe structure which may result from collective bulk-medium recoil in response to parton stopping.Comment: 10 pages, 10 figures, proceedings, MIT workshop on fluctuations and correlations in relativistic nuclear collision

    Evidence for Nodal Superconductivity in LaFePO from Scanning SQUID Susceptometry

    Full text link
    We measure changes in the penetration depth λ\lambda of the Tc6T_c \approx 6 K superconductor LaFePO. In the process scanning SQUID susceptometry is demonstrated as a technique for accurately measuring {\it local} temperature-dependent changes in λ\lambda, making it ideal for studying early or difficult-to-grow materials. λ\lambda of LaFePO is found to vary linearly with temperature from 0.36 to \sim2 K, with a slope of 143±\pm15 \AA/K, suggesting line nodes in the superconducting order parameter. The linear dependence up to Tc/3\sim T_c/3 is similar to the cuprate superconductors, indicating well-developed nodes.Comment: 4 pages, 5 figure

    The Reactome BioMart

    Get PDF
    Reactome is an open source, expert-authored, manually curated and peer-reviewed database of reactions, pathways and biological processes. We provide an intuitive web-based user interface to pathway knowledge and a suite of data analysis tools. The Reactome BioMart provides biologists and bioinformaticians with a single web interface for performing simple or elaborate queries of the Reactome database, aggregating data from different sources and providing an opportunity to integrate experimental and computational results with information relating to biological pathways. Database URL: http://www.reactome.org
    corecore