960 research outputs found
BiFeO3/La0.7Sr0.3MnO3 heterostructures deposited on Spark Plasma Sintered LaAlO3 Substrates
Multiferroic BiFeO3 (BFO) / La0.7Sr0.3MnO3 heterostructured thin films were
grown by pulsed laser deposition on polished spark plasma sintered LaAlO3 (LAO)
polycrystalline substrates. Both polycrystalline LAO substrates and BFO films
were locally characterized using electron backscattering diffraction (EBSD),
which confirmed the high-quality local epitaxial growth on each substrate
grain. Piezoforce microscopy was used to image and switch the piezo-domains,
and the results are consistent with the relative orientation of the
ferroelectric variants with the surface normal. This high-throughput synthesis
process opens the routes towards wide survey of electronic properties as a
function of crystalline orientation in complex oxide thin film synthesis.Comment: 10 pages, 4 figures, Submitted to Applied Physics Letter
On the origin of non-monotonic doping dependence of the in-plane resistivity anisotropy in Ba(Fe)As, = Co, Ni and Cu
The in-plane resistivity anisotropy has been measured for detwinned single
crystals of Ba(FeNi)As and Ba(FeCu)As.
The data reveal a non-monotonic doping dependence, similar to previous
observations for Ba(FeCo)As. Magnetotransport measurements
of the parent compound reveal a non-linear Hall coefficient and a strong linear
term in the transverse magnetoresistance. Both effects are rapidly suppressed
with chemical substitution over a similar compositional range as the onset of
the large in-plane resistivity anisotropy. It is suggested that the relatively
small in-plane anisotropy of the parent compound in the spin density wave state
is due to the presence of an isotropic, high mobility pocket of reconstructed
Fermi surface. Progressive suppression of the contribution to the conductivity
arising from this isotropic pocket with chemical substitution eventually
reveals the underlying in-plane anisotropy associated with the remaining FS
pockets.Comment: 12 pages, 9 figure
A neutron scattering study of the interplay between structure and magnetism in Ba(FeCo)As
Single crystal neutron diffraction is used to investigate the magnetic and
structural phase diagram of the electron doped superconductor
Ba(FeCo)As. Heat capacity and resistivity measurements have
demonstrated that Co doping this system splits the combined antiferromagnetic
and structural transition present in BaFeAs into two distinct
transitions. For =0.025, we find that the upper transition is between the
high-temperature tetragonal and low-temperature orthorhombic structures with
( K) and the antiferromagnetic transition occurs at
K. We find that doping rapidly suppresses the
antiferromagnetism, with antiferromagnetic order disappearing at . However, there is a region of co-existence of antiferromagnetism and
superconductivity. The effect of the antiferromagnetic transition can be seen
in the temperature dependence of the structural Bragg peaks from both neutron
scattering and x-ray diffraction. We infer from this that there is strong
coupling between the antiferromagnetism and the crystal lattice
Homogeneous nucleation of colloidal melts under the influence of shearing fields
We study the effect of shear flow on homogeneous crystal nucleation, using
Brownian Dynamics simulations in combination with an umbrella sampling like
technique. The symmetry breaking due to shear results in anisotropic radial
distribution functions. The homogeneous shear rate suppresses crystal
nucleation and leads to an increase of the size of the critical nucleus. These
observations can be described by a simple, phenomenological extension of
classical nucleation theory. In addition, we find that nuclei have a
preferential orientation with respect to the direction of shear. On average the
longest dimension of a nucleus is along the vorticity direction, while the
shortest dimension is preferably perpendicular to that and slightly tilted with
respect to the gradient direction.Comment: 10 pages, 8 figures, Submitted to J. Phys.: Condens. Matte
Transverse Momentum Correlations in Relativistic Nuclear Collisions
From the correlation structure of transverse momentum in relativistic
nuclear collisions we observe for the first time temperature/velocity structure
resulting from low- partons. Our novel analysis technique does not invoke
an {\em a priori} jet hypothesis. autocorrelations derived from the scale
dependence of fluctuations reveal a complex parton dissipation process
in RHIC heavy ion collisions. We also observe structure which may result from
collective bulk-medium recoil in response to parton stopping.Comment: 10 pages, 10 figures, proceedings, MIT workshop on fluctuations and
correlations in relativistic nuclear collision
Evidence for Nodal Superconductivity in LaFePO from Scanning SQUID Susceptometry
We measure changes in the penetration depth of the
K superconductor LaFePO. In the process scanning SQUID susceptometry is
demonstrated as a technique for accurately measuring {\it local}
temperature-dependent changes in , making it ideal for studying early
or difficult-to-grow materials. of LaFePO is found to vary linearly
with temperature from 0.36 to 2 K, with a slope of 14315 \AA/K,
suggesting line nodes in the superconducting order parameter. The linear
dependence up to is similar to the cuprate superconductors,
indicating well-developed nodes.Comment: 4 pages, 5 figure
The Reactome BioMart
Reactome is an open source, expert-authored, manually curated and peer-reviewed database of reactions, pathways and biological processes. We provide an intuitive web-based user interface to pathway knowledge and a suite of data analysis tools. The Reactome BioMart provides biologists and bioinformaticians with a single web interface for performing simple or elaborate queries of the Reactome database, aggregating data from different sources and providing an opportunity to integrate experimental and computational results with information relating to biological pathways. Database URL: http://www.reactome.org
- …
