535 research outputs found
Bond disproportionation and dynamical charge fluctuations in the perovskite rare earth nickelates
We present a theory describing the local electronic properties of the
perovskite rare earth nickelates--materials which have negative charge transfer
energies, strong O -- Ni covalence, and breathing mode lattice
distortions at the origin of highly studied metal-insulator and
antiferromagnetic ordering transitions. Utilizing a full orbital, full
correlation double cluster approach, we find strong charge fluctuations in
agreement with a bond disproportionation interpretation. The unique double
cluster formulation permits the inclusion of necessary orbital degeneracies and
Coulomb interactions to calculate resonant x-ray spectral responses, with which
we find excellent agreement with well-established experimental results. This
previously absent, crucial link between theory and experiment provides
validation of the recently proposed bond disproportionation theory, and
provides an analysis methodology for spectroscopic studies of engineered phases
of nickelates and other high valence transition metal compounds
Spin-state transition in LaCoO3: direct neutron spectroscopic evidence of excited magnetic states
A gradual spin-state transition occurs in LaCoO3 around T~80-120 K, whose
detailed nature remains controversial. We studied this transition by means of
inelastic neutron scattering (INS), and found that with increasing temperature
an excitation at ~0.6 meV appears, whose intensity increases with temperature,
following the bulk magnetization. Within a model including crystal field
interaction and spin-orbit coupling we interpret this excitation as originating
from a transition between thermally excited states located about 120 K above
the ground state. We further discuss the nature of the magnetic excited state
in terms of intermediate-spin (IS, S=1) vs. high-spin (HS, S=2) states. Since
the g-factor obtained from the field dependence of the INS is g~3, the second
interpretation looks more plausible.Comment: 10 pages, 4 figure
Mott-Hubbard exciton in the optical conductivity of YTiO3 and SmTiO3
In the Mott-Hubbard insulators YTiO3 and SmTiO3 we study optical excitations
from the lower to the upper Hubbard band, d^1d^1 -> d^0d^2. The multi-peak
structure observed in the optical conductivity reflects the multiplet structure
of the upper Hubbard band in a multi-orbital system. Absorption bands at 2.55
and 4.15 eV in the ferromagnet YTiO3 correspond to final states with a triplet
d^2 configuration, whereas a peak at 3.7 eV in the antiferromagnet SmTiO3 is
attributed to a singlet d^2 final state. A strongly temperature-dependent peak
at 1.95 eV in YTiO3 and 1.8 eV in SmTiO3 is interpreted in terms of a Hubbard
exciton, i.e., a charge-neutral (quasi-)bound state of a hole in the lower
Hubbard band and a double occupancy in the upper one. The binding to such a
Hubbard exciton may arise both due to Coulomb attraction between
nearest-neighbor sites and due to a lowering of the kinetic energy in a system
with magnetic and/or orbital correlations. Furthermore, we observe anomalies of
the spectral weight in the vicinity of the magnetic ordering transitions, both
in YTiO3 and SmTiO3. In the G-type antiferromagnet SmTiO3, the sign of the
change of the spectral weight at T_N depends on the polarization. This
demonstrates that the temperature dependence of the spectral weight is not
dominated by the spin-spin correlations, but rather reflects small changes of
the orbital occupation.Comment: Strongly extended version; new data of SmTiO3 included; detailed
discussion of temperature dependence include
Non-resonant inelastic x-ray scattering involving excitonic excitations
In a recent publication Larson \textit{et al.} reported remarkably clear
- excitations for NiO and CoO measured with x-ray energies well below the
transition metal edge. In this letter we demonstrate that we can obtain an
accurate quantitative description based on a local many body approach. We find
that the magnitude of can be tuned for maximum sensitivity for
dipole, quadrupole, etc. excitations. We also find that the direction of
with respect to the crystal axes can be used as an equivalent to
polarization similar to electron energy loss spectroscopy, allowing for a
determination of the local symmetry of the initial and final state based on
selection rules. This method is more generally applicable and combined with the
high resolution available, could be a powerful tool for the study of local
distortions and symmetries in transition metal compounds including also buried
interfaces
Anisotropic Susceptibility of La_2-xSr_xCoO_4 related to the Spin States of Cobalt
We present a study of the magnetic susceptibility of La_2-xSr_xCoO_4 single
crystals in a doping range 0.3<=x<=0.8. Our data shows a pronounced magnetic
anisotropy for all compounds. This anisotropy is in agreement with a low-spin
ground state (S=0) of Co^3+ for x>=0.4 and a high-spin ground state (S=3/2) of
Co^2+. We compare our data with a crystal-field model calculation assuming
local moments and find a good description of the magnetic behavior for x>=0.5.
This includes the pronounced kinks observed in the inverse magnetic
susceptibility, which result from the anisotropy and low-energy excited states
of Co^2+ and are not related to magnetic ordering or temperature-dependent
spin-state transitions
The Potato Ontology: Delimitation of the Domain, Modelling Concepts, and Prospects of Performance.
The ever increasing amount of data gathered by more growers in more years offers possibilities to add value. Therefore a common and controlled vocabulary of the potato domain that describes concepts, attributes, and the relations between them in a formal way using a standardised knowledge representation is being developed: a potato ontology. The advantage is that all possible stakeholders will be able to understand the data expressed by this ontology and that software applications can process them automatically. This paper describes the procedures to establish such an ontology where competency questions formulated by stakeholders and potential users take a central position. The three main classes are those used in crop ecology: Crop, Environment and Management
Atomic and itinerant effects at the transition metal x-ray absorption K-pre-edge exemplified in the case of VO
X-ray absorption spectroscopy is a well established tool for obtaining
information about orbital and spin degrees of freedom in transition metal- and
rare earth-compounds. For this purpose usually the dipole transitions of the L-
(2p to 3d) and M- (3d to 4f) edges are employed, whereas higher order
transitions such as quadrupolar 1s to 3d in the K-edge are rarely studied in
that respect. This is due to the fact that usually such quadrupolar transitions
are overshadowed by dipole allowed 1s to 4p transitions and, hence, are visible
only as minor features in the pre-edge region. Nonetheless, these features
carry a lot of valuable information, similar to the dipole L-edge transition,
which is not accessible in experiments under pressure due to the absorption of
the diamond anvil pressurecell. We recently performed a theoretical and
experimental analysis of such a situation for the metal insulator transition of
(V(1-x)Crx)2O3. Since the importance of the orbital degrees of freedom in this
transition is widely accepted, a thorough understanding of quadrupole
transitions of the vanadium K-pre-edge provides crucial information about the
underlying physics. Moreover, the lack of inversion symetry at the vanadium
site leads to onsite mixing of vanadium 3d- and 4p- states and related quantum
mechanical interferences between dipole and quadrupole transitions. Here we
present a theoretical analysis of experimental high resolution x-ray absorption
spectroscopy at the V pre-K edge measured in partial fluorescence yield mode
for single crystals. We carried out density functional as well as configuration
interaction calculations in order to capture effects coming from both,
itinerant and atomic limits
- …