535 research outputs found

    Bond disproportionation and dynamical charge fluctuations in the perovskite rare earth nickelates

    Full text link
    We present a theory describing the local electronic properties of the perovskite rare earth nickelates--materials which have negative charge transfer energies, strong O 2p2p -- Ni 3d3d covalence, and breathing mode lattice distortions at the origin of highly studied metal-insulator and antiferromagnetic ordering transitions. Utilizing a full orbital, full correlation double cluster approach, we find strong charge fluctuations in agreement with a bond disproportionation interpretation. The unique double cluster formulation permits the inclusion of necessary orbital degeneracies and Coulomb interactions to calculate resonant x-ray spectral responses, with which we find excellent agreement with well-established experimental results. This previously absent, crucial link between theory and experiment provides validation of the recently proposed bond disproportionation theory, and provides an analysis methodology for spectroscopic studies of engineered phases of nickelates and other high valence transition metal compounds

    Spin-state transition in LaCoO3: direct neutron spectroscopic evidence of excited magnetic states

    Get PDF
    A gradual spin-state transition occurs in LaCoO3 around T~80-120 K, whose detailed nature remains controversial. We studied this transition by means of inelastic neutron scattering (INS), and found that with increasing temperature an excitation at ~0.6 meV appears, whose intensity increases with temperature, following the bulk magnetization. Within a model including crystal field interaction and spin-orbit coupling we interpret this excitation as originating from a transition between thermally excited states located about 120 K above the ground state. We further discuss the nature of the magnetic excited state in terms of intermediate-spin (IS, S=1) vs. high-spin (HS, S=2) states. Since the g-factor obtained from the field dependence of the INS is g~3, the second interpretation looks more plausible.Comment: 10 pages, 4 figure

    Mott-Hubbard exciton in the optical conductivity of YTiO3 and SmTiO3

    Full text link
    In the Mott-Hubbard insulators YTiO3 and SmTiO3 we study optical excitations from the lower to the upper Hubbard band, d^1d^1 -> d^0d^2. The multi-peak structure observed in the optical conductivity reflects the multiplet structure of the upper Hubbard band in a multi-orbital system. Absorption bands at 2.55 and 4.15 eV in the ferromagnet YTiO3 correspond to final states with a triplet d^2 configuration, whereas a peak at 3.7 eV in the antiferromagnet SmTiO3 is attributed to a singlet d^2 final state. A strongly temperature-dependent peak at 1.95 eV in YTiO3 and 1.8 eV in SmTiO3 is interpreted in terms of a Hubbard exciton, i.e., a charge-neutral (quasi-)bound state of a hole in the lower Hubbard band and a double occupancy in the upper one. The binding to such a Hubbard exciton may arise both due to Coulomb attraction between nearest-neighbor sites and due to a lowering of the kinetic energy in a system with magnetic and/or orbital correlations. Furthermore, we observe anomalies of the spectral weight in the vicinity of the magnetic ordering transitions, both in YTiO3 and SmTiO3. In the G-type antiferromagnet SmTiO3, the sign of the change of the spectral weight at T_N depends on the polarization. This demonstrates that the temperature dependence of the spectral weight is not dominated by the spin-spin correlations, but rather reflects small changes of the orbital occupation.Comment: Strongly extended version; new data of SmTiO3 included; detailed discussion of temperature dependence include

    Non-resonant inelastic x-ray scattering involving excitonic excitations

    Full text link
    In a recent publication Larson \textit{et al.} reported remarkably clear dd-dd excitations for NiO and CoO measured with x-ray energies well below the transition metal KK edge. In this letter we demonstrate that we can obtain an accurate quantitative description based on a local many body approach. We find that the magnitude of q⃗\vec{q} can be tuned for maximum sensitivity for dipole, quadrupole, etc. excitations. We also find that the direction of q⃗\vec{q} with respect to the crystal axes can be used as an equivalent to polarization similar to electron energy loss spectroscopy, allowing for a determination of the local symmetry of the initial and final state based on selection rules. This method is more generally applicable and combined with the high resolution available, could be a powerful tool for the study of local distortions and symmetries in transition metal compounds including also buried interfaces

    Anisotropic Susceptibility of La_2-xSr_xCoO_4 related to the Spin States of Cobalt

    Full text link
    We present a study of the magnetic susceptibility of La_2-xSr_xCoO_4 single crystals in a doping range 0.3<=x<=0.8. Our data shows a pronounced magnetic anisotropy for all compounds. This anisotropy is in agreement with a low-spin ground state (S=0) of Co^3+ for x>=0.4 and a high-spin ground state (S=3/2) of Co^2+. We compare our data with a crystal-field model calculation assuming local moments and find a good description of the magnetic behavior for x>=0.5. This includes the pronounced kinks observed in the inverse magnetic susceptibility, which result from the anisotropy and low-energy excited states of Co^2+ and are not related to magnetic ordering or temperature-dependent spin-state transitions

    The Potato Ontology: Delimitation of the Domain, Modelling Concepts, and Prospects of Performance.

    Get PDF
    The ever increasing amount of data gathered by more growers in more years offers possibilities to add value. Therefore a common and controlled vocabulary of the potato domain that describes concepts, attributes, and the relations between them in a formal way using a standardised knowledge representation is being developed: a potato ontology. The advantage is that all possible stakeholders will be able to understand the data expressed by this ontology and that software applications can process them automatically. This paper describes the procedures to establish such an ontology where competency questions formulated by stakeholders and potential users take a central position. The three main classes are those used in crop ecology: Crop, Environment and Management

    Atomic and itinerant effects at the transition metal x-ray absorption K-pre-edge exemplified in the case of V2_2O3_3

    Full text link
    X-ray absorption spectroscopy is a well established tool for obtaining information about orbital and spin degrees of freedom in transition metal- and rare earth-compounds. For this purpose usually the dipole transitions of the L- (2p to 3d) and M- (3d to 4f) edges are employed, whereas higher order transitions such as quadrupolar 1s to 3d in the K-edge are rarely studied in that respect. This is due to the fact that usually such quadrupolar transitions are overshadowed by dipole allowed 1s to 4p transitions and, hence, are visible only as minor features in the pre-edge region. Nonetheless, these features carry a lot of valuable information, similar to the dipole L-edge transition, which is not accessible in experiments under pressure due to the absorption of the diamond anvil pressurecell. We recently performed a theoretical and experimental analysis of such a situation for the metal insulator transition of (V(1-x)Crx)2O3. Since the importance of the orbital degrees of freedom in this transition is widely accepted, a thorough understanding of quadrupole transitions of the vanadium K-pre-edge provides crucial information about the underlying physics. Moreover, the lack of inversion symetry at the vanadium site leads to onsite mixing of vanadium 3d- and 4p- states and related quantum mechanical interferences between dipole and quadrupole transitions. Here we present a theoretical analysis of experimental high resolution x-ray absorption spectroscopy at the V pre-K edge measured in partial fluorescence yield mode for single crystals. We carried out density functional as well as configuration interaction calculations in order to capture effects coming from both, itinerant and atomic limits
    • …
    corecore