118 research outputs found

    IT IS WATER WHAT MATTERS: THz SPECTROSCOPY AS A TOOL TO STUDY HYDRATION DYNAMICS

    Get PDF
    Terahertz absorption spectroscopy has turned out to be a new powerful tool to study biomolecular hydration. The development of THz technology helped to fill the experimental gap in this frequency range. These experimental advances had to go hand in hand with the development of theoretical concepts that have been developed in the recent years to describe the underlying solute-induced sub-picosecond dynamics of the hydration shell. This frequency range covers the rattling modes of the ion with its hydration cage and allowed to derive major conclusions on the molecular picture of ion hydration, a key issue in chemistry. By a combination of experiment and theory it is now possible to rigorously dissect the THz spectrum of a solvated biomolecule into the distinct solute, solvent and solute-solvent coupled contributions Moreover, we highlight recent results that show the significance of hydrogen bond dynamics for molecular recognition. In all of these examples, a gradient of water motion toward functional sites of proteins is observed, the so-called hydration funnel. The efficiency of the coupling at THz frequencies is explained in terms of a two-tier (short- and long-range) solute-solvent interaction

    IR spectroscopy of pyridine-water structures in helium nanodroplets

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We present the results of an IR spectroscopic study of pyridine–water heterodimer formation in helium nanodroplets. The experiments were carried out in the frequency range of the pyridine C–H stretch region (3055–3100 cm−1) and upon water deuteration in the D–O stretch region (2740–2800 cm−1). In order to come to an unambiguous assignment we have determined the angle between the permanent dipole and the vibrational transition moment of the aggregates. The experiments have been accompanied by theoretical simulations which yielded two minimum structures with a 16.28 kJ mol−1energy difference. The experimentally observed bands were assigned to two structures with different H-bonds: an N⋯H bond and a bifurcated O⋯H–C bond.DFG, FOR 618, Die Aggregation kleiner Moleküle mit präzisen Methoden verstehen - Experiment und Theorie im Wechselspie

    Spectral signatures of excess-proton waiting and transfer-path dynamics in aqueous hydrochloric acid solutions

    Get PDF
    Signatures of solvated excess protons in infrared difference absorption spectra, such as the continuum band between the water bend and stretch bands, have been experimentally known for a long time, but the theoretical basis for linking spectral signatures with the microscopic proton-transfer mechanism so far relied on normal-mode analysis. We analyze the excess-proton dynamics in ab initio molecular-dynamics simulations of aqueous hydrochloric acid solutions by trajectory-decomposition techniques. The continuum band in the 2000 - 3000 cm−1^{-1 } range is shown to be due to normal-mode oscillations of temporary H3_3O+^+ complexes. An additional prominent peak at 400 cm−1^{-1} reports on the coupling of excess-proton motion to the relative vibrations of the two flanking water molecules. The actual proton transfer between two water molecules, which for large water separations involves crossing of a barrier and thus is not a normal mode, is characterized by two characteristic time scales: Firstly, the waiting time for transfer to occur in the range of 200 - 300 fs, which leads to a broad weak shoulder around ~100 cm−1^{-1}, consistent with our experimental THz spectra. Secondly, the mean duration of a transfer event of about 14 fs, which produces a rather well-defined spectral contribution around 1200 cm−1^{-1} and agrees in location and width with previous experimental mid-infrared spectra

    Strong Anisotropy in Liquid Water upon Librational Excitation using Terahertz Laser Fields

    Full text link
    Tracking the excitation of water molecules in the homogeneous liquid is challenging due to the ultrafast dissipation of rotational excitation energy through the hydrogen-bonded network. Here we demonstrate strong transient anisotropy of liquid water through librational excitation using single-color pump-probe experiments at 12.3 THz. We deduce a third order response of chi^3 exceeding previously reported values in the optical range by three orders of magnitude. Using a theory that replaces the nonlinear response with a material response property amenable to molecular dynamics simulation, we show that the rotationally damped motion of water molecules in the librational band is resonantly driven at this frequency, which could explain the enhancement of the anisotropy in the liquid by the external Terahertz field. By addition of salt (MgSO4), the hydration water is instead dominated by the local electric field of the ions, resulting in reduction of water molecules that can be dynamically perturbed by THz pulses

    Observation of the Low-Frequency Spectrum of the Water Trimer as a Sensitive Test of the Water-Trimer Potential and the Dipole-Moment Surface

    Get PDF
    © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. Intermolecular interactions in bulk water are dominated by pairwise and non-pairwise cooperative interactions. While accurate descriptions of the pairwise interactions are available and can be tested by precise low-frequency spectra of the water dimer up to 550 cm−1, the same does not hold for the three-body interactions. Here, we report the first comprehensive spectrum of the water trimer in the frequency region from 70 to 620 cm−1 using helium-nanodroplet isolation and free-electron lasers. By comparison to accompanying high-level quantum calculations, the experimentally observed intermolecular bands can be assigned. The transition frequencies of the degenerate translation, the degenerate in-plane and the non-degenerate out-of-plane libration, as well as additional bands of the out-of-plane librational mode are reported for the first time. These provide a benchmark for state-of-the-art water potentials and dipole-moment surfaces, especially with respect to three-body interactions
    • …
    corecore