1,682 research outputs found

    Analisa Sistem Proteksi Petir pada Sutt 150 KV Menggunakan Software ATP

    Full text link
    Electrical energy is very important today. The power company distributes the electric energy through the 150 kV overhead lines. The transmission line is a major part of the electrical energy distribution process. Overhead lines are supported by high towers, therefore the overhead lines and towers prone to lightning. The lightning current leads to the increasing voltage on the overhead lines. Surge arrester is a protective device used to protect overhead lines from lightning current. The analysis of the performance of the surge arrester against the lightning impulse requires the investigation in the placement of the surge arrester and the number of surge arresters installed. This study aims todetermine the magnitude of the voltage caused by lightning strikes by varying the location of the surge arrester on the overhead lines. This study was conducted by selecting a lightning strike at apeak voltage of 10 MV on a transmission tower using ATP software. This study indicated that the installation of surge arresters on the overhead lines for each tower leads to droping voltage verywell. The result of study shows that the best result was to install the arresters on each tower phase by decreasing the voltage at 1st tower by 0,4679 MV (92,81%), 2nd tower 0,5674 MV (92,64%), 3rd tower 1,2248 MV (85,79%), 4th tower 10 MV (0%), 5th tower 1,2322 MV (86,09%) and 6th tower 0,6219 MV (92,53%)

    Principles of Control for Decoherence-Free Subsystems

    Get PDF
    Decoherence-Free Subsystems (DFS) are a powerful means of protecting quantum information against noise with known symmetry properties. Although Hamiltonians theoretically exist that can implement a universal set of logic gates on DFS encoded qubits without ever leaving the protected subsystem, the natural Hamiltonians that are available in specific implementations do not necessarily have this property. Here we describe some of the principles that can be used in such cases to operate on encoded qubits without losing the protection offered by the DFS. In particular, we show how dynamical decoupling can be used to control decoherence during the unavoidable excursions outside of the DFS. By means of cumulant expansions, we show how the fidelity of quantum gates implemented by this method on a simple two-physical-qubit DFS depends on the correlation time of the noise responsible for decoherence. We further show by means of numerical simulations how our previously introduced "strongly modulating pulses" for NMR quantum information processing can permit high-fidelity operations on multiple DFS encoded qubits in practice, provided that the rate at which the system can be modulated is fast compared to the correlation time of the noise. The principles thereby illustrated are expected to be broadly applicable to many implementations of quantum information processors based on DFS encoded qubits.Comment: 12 pages, 7 figure

    Design of Strongly Modulating Pulses to Implement Precise Effective Hamiltonians for Quantum Information Processing

    Get PDF
    We describe a method for improving coherent control through the use of detailed knowledge of the system's Hamiltonian. Precise unitary transformations were obtained by strongly modulating the system's dynamics to average out unwanted evolution. With the aid of numerical search methods, pulsed irradiation schemes are obtained that perform accurate, arbitrary, selective gates on multi-qubit systems. Compared to low power selective pulses, which cannot average out all unwanted evolution, these pulses are substantially shorter in time, thereby reducing the effects of relaxation. Liquid-state NMR techniques on homonuclear spin systems are used to demonstrate the accuracy of these gates both in simulation and experiment. Simulations of the coherent evolution of a 3-qubit system show that the control sequences faithfully implement the unitary operations, typically yielding gate fidelities on the order of 0.999 and, for some sequences, up to 0.9997. The experimentally determined density matrices resulting from the application of different control sequences on a 3-spin system have overlaps of up to 0.99 with the expected states, confirming the quality of the experimental implementation.Comment: RevTeX3, 11 pages including 2 tables and 5 figures; Journal of Chemical Physics, in pres

    Experimental Implementation of Logical Bell State Encoding

    Get PDF
    Liquid phase NMR is a general purpose test-bed for developing methods of coherent control relevant to quantum information processing. Here we extend these studies to the coherent control of logical qubits and in particular to the unitary gates necessary to create entanglement between logical qubits. We report an experimental implementation of a conditional logical gate between two logical qubits that are each in decoherence free subspaces that protect the quantum information from fully correlated dephasing.Comment: 9 Pages, 5 Figure

    A Method for Modeling Decoherence on a Quantum Information Processor

    Full text link
    We develop and implement a method for modeling decoherence processes on an N-dimensional quantum system that requires only an N2N^2-dimensional quantum environment and random classical fields. This model offers the advantage that it may be implemented on small quantum information processors in order to explore the intermediate regime between semiclassical and fully quantum models. We consider in particular σzσz\sigma_z\sigma_z system-environment couplings which induce coherence (phase) damping, though the model is directly extendable to other coupling Hamiltonians. Effective, irreversible phase-damping of the system is obtained by applying an additional stochastic Hamiltonian on the environment alone, periodically redressing it and thereby irreversibliy randomizing the system phase information that has leaked into the environment as a result of the coupling. This model is exactly solvable in the case of phase-damping, and we use this solution to describe the model's behavior in some limiting cases. In the limit of small stochastic phase kicks the system's coherence decays exponentially at a rate which increases linearly with the kick frequency. In the case of strong kicks we observe an effective decoupling of the system from the environment. We present a detailed implementation of the method on an nuclear magnetic resonance quantum information processor.Comment: 12 pages, 9 figure

    Statistical Properties of Contact Maps

    Full text link
    A contact map is a simple representation of the structure of proteins and other chain-like macromolecules. This representation is quite amenable to numerical studies of folding. We show that the number of contact maps corresponding to the possible configurations of a polypeptide chain of N amino acids, represented by (N-1)-step self avoiding walks on a lattice, grows exponentially with N for all dimensions D>1. We carry out exact enumerations in D=2 on the square and triangular lattices for walks of up to 20 steps and investigate various statistical properties of contact maps corresponding to such walks. We also study the exact statistics of contact maps generated by walks on a ladder.Comment: Latex file, 15 pages, 12 eps figures. To appear on Phys. Rev.

    Spintronics and Quantum Dots for Quantum Computing and Quantum Communication

    Get PDF
    Control over electron-spin states, such as coherent manipulation, filtering and measurement promises access to new technologies in conventional as well as in quantum computation and quantum communication. We review our proposal of using electron spins in quantum confined structures as qubits and discuss the requirements for implementing a quantum computer. We describe several realizations of one- and two-qubit gates and of the read-in and read-out tasks. We discuss recently proposed schemes for using a single quantum dot as spin-filter and spin-memory device. Considering electronic EPR pairs needed for quantum communication we show that their spin entanglement can be detected in mesoscopic transport measurements using metallic as well as superconducting leads attached to the dots.Comment: Prepared for Fortschritte der Physik special issue, Experimental Proposals for Quantum Computation. 15 pages, 5 figures; typos corrected, references adde
    corecore