1,683 research outputs found
Analisa Sistem Proteksi Petir pada Sutt 150 KV Menggunakan Software ATP
Electrical energy is very important today. The power company distributes the electric energy through the 150 kV overhead lines. The transmission line is a major part of the electrical energy distribution process. Overhead lines are supported by high towers, therefore the overhead lines and towers prone to lightning. The lightning current leads to the increasing voltage on the overhead lines. Surge arrester is a protective device used to protect overhead lines from lightning current. The analysis of the performance of the surge arrester against the lightning impulse requires the investigation in the placement of the surge arrester and the number of surge arresters installed. This study aims todetermine the magnitude of the voltage caused by lightning strikes by varying the location of the surge arrester on the overhead lines. This study was conducted by selecting a lightning strike at apeak voltage of 10 MV on a transmission tower using ATP software. This study indicated that the installation of surge arresters on the overhead lines for each tower leads to droping voltage verywell. The result of study shows that the best result was to install the arresters on each tower phase by decreasing the voltage at 1st tower by 0,4679 MV (92,81%), 2nd tower 0,5674 MV (92,64%), 3rd tower 1,2248 MV (85,79%), 4th tower 10 MV (0%), 5th tower 1,2322 MV (86,09%) and 6th tower 0,6219 MV (92,53%)
Principles of Control for Decoherence-Free Subsystems
Decoherence-Free Subsystems (DFS) are a powerful means of protecting quantum
information against noise with known symmetry properties. Although Hamiltonians
theoretically exist that can implement a universal set of logic gates on DFS
encoded qubits without ever leaving the protected subsystem, the natural
Hamiltonians that are available in specific implementations do not necessarily
have this property. Here we describe some of the principles that can be used in
such cases to operate on encoded qubits without losing the protection offered
by the DFS. In particular, we show how dynamical decoupling can be used to
control decoherence during the unavoidable excursions outside of the DFS. By
means of cumulant expansions, we show how the fidelity of quantum gates
implemented by this method on a simple two-physical-qubit DFS depends on the
correlation time of the noise responsible for decoherence. We further show by
means of numerical simulations how our previously introduced "strongly
modulating pulses" for NMR quantum information processing can permit
high-fidelity operations on multiple DFS encoded qubits in practice, provided
that the rate at which the system can be modulated is fast compared to the
correlation time of the noise. The principles thereby illustrated are expected
to be broadly applicable to many implementations of quantum information
processors based on DFS encoded qubits.Comment: 12 pages, 7 figure
Design of Strongly Modulating Pulses to Implement Precise Effective Hamiltonians for Quantum Information Processing
We describe a method for improving coherent control through the use of
detailed knowledge of the system's Hamiltonian. Precise unitary transformations
were obtained by strongly modulating the system's dynamics to average out
unwanted evolution. With the aid of numerical search methods, pulsed
irradiation schemes are obtained that perform accurate, arbitrary, selective
gates on multi-qubit systems. Compared to low power selective pulses, which
cannot average out all unwanted evolution, these pulses are substantially
shorter in time, thereby reducing the effects of relaxation. Liquid-state NMR
techniques on homonuclear spin systems are used to demonstrate the accuracy of
these gates both in simulation and experiment. Simulations of the coherent
evolution of a 3-qubit system show that the control sequences faithfully
implement the unitary operations, typically yielding gate fidelities on the
order of 0.999 and, for some sequences, up to 0.9997. The experimentally
determined density matrices resulting from the application of different control
sequences on a 3-spin system have overlaps of up to 0.99 with the expected
states, confirming the quality of the experimental implementation.Comment: RevTeX3, 11 pages including 2 tables and 5 figures; Journal of
Chemical Physics, in pres
Experimental Implementation of Logical Bell State Encoding
Liquid phase NMR is a general purpose test-bed for developing methods of
coherent control relevant to quantum information processing. Here we extend
these studies to the coherent control of logical qubits and in particular to
the unitary gates necessary to create entanglement between logical qubits. We
report an experimental implementation of a conditional logical gate between two
logical qubits that are each in decoherence free subspaces that protect the
quantum information from fully correlated dephasing.Comment: 9 Pages, 5 Figure
A Method for Modeling Decoherence on a Quantum Information Processor
We develop and implement a method for modeling decoherence processes on an
N-dimensional quantum system that requires only an -dimensional quantum
environment and random classical fields. This model offers the advantage that
it may be implemented on small quantum information processors in order to
explore the intermediate regime between semiclassical and fully quantum models.
We consider in particular system-environment couplings which
induce coherence (phase) damping, though the model is directly extendable to
other coupling Hamiltonians. Effective, irreversible phase-damping of the
system is obtained by applying an additional stochastic Hamiltonian on the
environment alone, periodically redressing it and thereby irreversibliy
randomizing the system phase information that has leaked into the environment
as a result of the coupling. This model is exactly solvable in the case of
phase-damping, and we use this solution to describe the model's behavior in
some limiting cases. In the limit of small stochastic phase kicks the system's
coherence decays exponentially at a rate which increases linearly with the kick
frequency. In the case of strong kicks we observe an effective decoupling of
the system from the environment. We present a detailed implementation of the
method on an nuclear magnetic resonance quantum information processor.Comment: 12 pages, 9 figure
Statistical Properties of Contact Maps
A contact map is a simple representation of the structure of proteins and
other chain-like macromolecules. This representation is quite amenable to
numerical studies of folding. We show that the number of contact maps
corresponding to the possible configurations of a polypeptide chain of N amino
acids, represented by (N-1)-step self avoiding walks on a lattice, grows
exponentially with N for all dimensions D>1. We carry out exact enumerations in
D=2 on the square and triangular lattices for walks of up to 20 steps and
investigate various statistical properties of contact maps corresponding to
such walks. We also study the exact statistics of contact maps generated by
walks on a ladder.Comment: Latex file, 15 pages, 12 eps figures. To appear on Phys. Rev.
Spintronics and Quantum Dots for Quantum Computing and Quantum Communication
Control over electron-spin states, such as coherent manipulation, filtering
and measurement promises access to new technologies in conventional as well as
in quantum computation and quantum communication. We review our proposal of
using electron spins in quantum confined structures as qubits and discuss the
requirements for implementing a quantum computer. We describe several
realizations of one- and two-qubit gates and of the read-in and read-out tasks.
We discuss recently proposed schemes for using a single quantum dot as
spin-filter and spin-memory device. Considering electronic EPR pairs needed for
quantum communication we show that their spin entanglement can be detected in
mesoscopic transport measurements using metallic as well as superconducting
leads attached to the dots.Comment: Prepared for Fortschritte der Physik special issue, Experimental
Proposals for Quantum Computation. 15 pages, 5 figures; typos corrected,
references adde
- …