50 research outputs found

    AGO6 Functions in RNA-Mediated Transcriptional Gene Silencing in Shoot and Root Meristems in Arabidopsis thaliana

    Get PDF
    RNA-directed DNA methylation (RdDM) is a small interfering RNA (siRNA)-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO) proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points

    Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre

    Get PDF
    Ogre elements are a distinct group of plant Ty3/gypsy-like retrotransposons characterized by several specific features, one of which is a separation of the gag-pol region into two non-overlapping open reading frames: ORF2 coding for Gag-Pro, and ORF3 coding for RT/RH-INT proteins. Previous characterization of Ogre elements from several plant species revealed that part of their transcripts lacks the region between ORF2 and ORF3, carrying one uninterrupted ORF instead. In this work, we investigated a hypothesis that this region represents an intron that is spliced out from part of the Ogre transcripts as a means for preferential production of ORF2-encoded proteins over those encoded by the complete ORF2–ORF3 region. The experiments involved analysis of transcription patterns of well-defined Ogre populations in a model plant Medicago truncatula and examination of transcripts carrying dissected pea Ogre intron expressed within a coding sequence of chimeric reporter gene. Both experimental approaches proved that the region between ORF2 and ORF3 is spliced from Ogre transcripts and showed that this process is only partial, probably due to weak splice signals. This is one of very few known cases of spliced LTR retrotransposons and the only one where splicing does not involve parts of the element’s coding sequences, thus resembling intron splicing found in most cellular genes

    A new look at the LTR retrotransposon content of the chicken genome

    Get PDF
    BACKGROUND: LTR retrotransposons contribute approximately 10 % of the mammalian genome, but it has been previously reported that there is a deficit of these elements in the chicken relative to both mammals and other birds. A novel LTR retrotransposon classification pipeline, LocaTR, was developed and subsequently utilised to re-examine the chicken LTR retrotransposon annotation, and determine if the proposed chicken deficit is biologically accurate or simply a technical artefact. RESULTS: Using LocaTR 3.01 % of the chicken galGal4 genome assembly was annotated as LTR retrotransposon-derived elements (nearly double the previous annotation), including 1,073 that were structurally intact. Element distribution is significantly correlated with chromosome size and is non-random within each chromosome. Elements are significantly depleted within coding regions and enriched in gene sparse areas of the genome. Over 40 % of intact elements are found in clusters, unrelated by age or genera, generally in poorly recombining regions. The transcription of most LTR retrotransposons were suppressed or incomplete, but individual domain and full length retroviral transcripts were produced in some cases, although mostly with regularly interspersed stop codons in all reading frames. Furthermore, RNAseq data from 23 diverse tissues enabled greater characterisation of the co-opted endogenous retrovirus Ovex1. This gene was shown to be expressed ubiquitously but at variable levels across different tissues. LTR retrotransposon content was found to be very variable across the avian lineage and did not correlate with either genome size or phylogenetic position. However, the extent of previous, species-specific LTR retrotransposon annotation appears to be a confounding factor. CONCLUSIONS: Use of the novel LocaTR pipeline has nearly doubled the annotated LTR retrotransposon content of the chicken genome compared to previous estimates. Further analysis has described element distribution, clustering patterns and degree of expression in a variety of adult tissues, as well as in three embryonic stages. This study also enabled better characterisation of the co-opted gamma retroviral envelope gene Ovex1. Additionally, this work suggests that there is no deficit of LTR retrotransposons within the Galliformes relative to other birds, or to mammalian genomes when scaled for the three-fold difference in genome size

    Correlation of LNCR rasiRNAs Expression with Heterochromatin Formation during Development of the Holocentric Insect Spodoptera frugiperda

    Get PDF
    Repeat-associated small interfering RNAs (rasiRNAs) are derived from various genomic repetitive elements and ensure genomic stability by silencing endogenous transposable elements. Here we describe a novel subset of 46 rasiRNAs named LNCR rasiRNAs due to their homology with one long non-coding RNA (LNCR) of Spodoptera frugiperda. LNCR operates as the intermediate of an unclassified transposable element (TE-LNCR). TE-LNCR is a very invasive transposable element, present in high copy numbers in the S. frugiperda genome. LNCR rasiRNAs are single-stranded RNAs without a prominent nucleotide motif, which are organized in two distinct, strand-specific clusters. The expression of LNCR and LNCR rasiRNAs is developmentally regulated. Formation of heterochromatin in the genomic region where three copies of the TE-LNCR are embedded was followed by chromatin immunoprecipitation (ChIP) and we observed this chromatin undergo dynamic changes during development. In summary, increased LNCR expression in certain developmental stages is followed by the appearance of a variety of LNCR rasiRNAs which appears to correlate with subsequent accumulation of a heterochromatic histone mark and silencing of the genomic region with TE-LNCR. These results support the notion that a repeat-associated small interfering RNA pathway is linked to heterochromatin formation and/or maintenance during development to establish repression of the TE-LNCR transposable element. This study provides insights into the rasiRNA silencing pathway and its role in the formation of fluctuating heterochromatin during the development of one holocentric organism

    Evolution of Genome Size and Complexity in Pinus

    Get PDF
    BACKGROUND: Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. CONCLUSIONS/SIGNIFICANCE: Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes

    Plant ARGONAUTEs: Features, Functions and Unknowns

    Full text link
    ARGONAUTEs (AGOs) are the effector proteins in eukaryotic small RNA(sRNA)– based gene silencing pathways controlling gene expression and transposon activity. In plants, AGOs regulate key biological processes such as development, response to stress, genome structure and integrity, and pathogen defense. Canonical functions of plant AGO–sRNA complexes include the endonucleolytic cleavage or translational inhibition of target RNAs, and the methylation of target DNAs. Here, I provide a brief update on the major features, molecular functions and biological roles of plant AGOs. A special focus is given to the more recent discoveries related to emerging molecular or biological functions of plant AGOs, as well as to the major unknowns in the plant AGO field.This work was supported by an Individual Fellowship from the European Union’s Horizon 2020 research and innovation program under the Marie SkΕ‚odowska-Curie grant agreement No. 655841 to A.C.Carbonell Olivares, A. (2017). Plant ARGONAUTEs: Features, Functions and Unknowns. En Plant Argonaute Proteins: Methods and Protocols. Springer Link. 1-21. https://doi.org/10.1007/978-1-4939-7165-7_1121Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14(7):447–459. doi: 10.1038/nrg3462Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110. doi: 10.1038/nrg2936Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50(2):81–99. doi: 10.1007/s00294-006-0078-xFang X, Qi Y (2016) RNAi in plants: an argonaute-centered view. Plant Cell 28(2):272–285. doi: 10.1105/tpc1500920Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, Kapoor S (2008) Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 9:451. doi: 10.1186/1471-2164-9-451Morel JB, Godon C, Mourrain P, Beclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14(3):629–639. doi: 10.1105/tpc010358Yamasaki T, Kim EJ, Cerutti H, Ohama T (2016) Argonaute3 is a key player in miRNA-mediated target cleavage and translational repression in Chlamydomonas. Plant J 85(2):258–268. doi: 10.1111/tpj13107Schroda M (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49(2):69–84. doi: 10.1007/s00294-005-0042-1Arif MA, Frank W, Khraiwesh B (2013) Role of RNA interference (RNAi) in the moss Physcomitrella patens. Int J Mol Sci 14(1):1516–1540. doi: 10.3390/ijms14011516Zhang H, Xia R, Meyers BC, Walbot V (2015) Evolution, functions, and mysteries of plant ARGONAUTE proteins. Curr Opin Plant Biol 27:84–90. doi: 10.1016/jpbi201506011Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8(11):884–896. doi: 10.1038/nrg2179Tolia NH, Joshua-Tor L (2007) Slicer and the argonautes. Nat Chem Biol 3(1):36–43. doi: 10.1038/nchembio848Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305(5689):1434–1437. doi: 10.1126/science1102514Nakanishi K, Weinberg DE, Bartel DP, Patel DJ (2012) Structure of yeast Argonaute with guide RNA. Nature 486(7403):368–374. doi: 10.1038/nature11211Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133(1):128–141. doi: 10.1016/jcell200802033Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5β€² terminal nucleotide. Cell 133(1):116–127. doi: 10.1016/jcell200802034Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49(4):493–500. doi: 10.1093/pcp/pcn043Zhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang X (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145(2):242–256. doi: 10.1016/jcell201103024Zhang X, Niu D, Carbonell A, Wang A, Lee A, Tun V, Wang Z, Carrington JC, Chang CE, Jin H (2014) ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nat Commun 5:5468. doi: 10.1038/ncomms6468Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441. doi: 10.1126/science1102513Sheng G, Zhao H, Wang J, Rao Y, Tian W, Swarts DC, van der Oost J, Patel DJ, Wang Y (2014) Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci U S A 111(2):652–657. doi: 10.1073/pnas1321032111Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102(33):11928–11933. doi: 10.1073/pnas0505461102Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19(3):421–428. doi: 10.1016/jmolcel200506014Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA, Nguyen T, Cuperus JT, Carrington JC (2012) Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24(9):3613–3629. doi: 10.1105/tpc112099945Qi Y, He X, Wang XJ, Kohany O, Jurka J, Hannon GJ (2006) Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443(7114):1008–1012. doi: 10.1038/nature05198Ji L, Liu X, Yan J, Wang W, Yumul RE, Kim YJ, Dinh TT, Liu J, Cui X, Zheng B, Agarwal M, Liu C, Cao X, Tang G, Chen X (2011) ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet 7(3):e1001358. doi: 10.1371/journalpgen1001358Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297(5589):2053–2056. doi: 10.1126/science1076311Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520. doi: 10.1016/S0092-8674(02)00863-2Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5β€² region. EMBO J 23(16):3356–3364. doi: 10.1038/sjemboj7600340German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26(8):941–946. doi: 10.1038/nbt1417Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18(10):758–762. doi: 10.1016/jcub200804042Arribas-Hernandez L, Kielpinski LJ, Brodersen P (2016) mRNA decay of most Arabidopsis miRNA targets requires slicer activity of AGO1. Plant Physiol 171(4):2620–2632. doi: 10.1104/pp.16.00231Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17(8):997–1003. doi: 10.1038/nsmb1866Montgomery TA, Yoo SJ, Fahlgren N, Gilbert SD, Howell MD, Sullivan CM, Alexander A, Nguyen G, Allen E, Ahn JH, Carrington JC (2008) AGO1-miR173 complex initiates phased siRNA formation in plants. Proc Natl Acad Sci U S A 105(51):20055–20062. doi: 10.1073/pnas0810241105Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2):207–221. doi: 10.1016/jcell200504004Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19(18):2164–2175. doi: 10.1101/gad1352605Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20(24):3407–3425. doi: 10.1101/gad1476406Arribas-Hernandez L, Marchais A, Poulsen C, Haase B, Hauptmann J, Benes V, Meister G, Brodersen P (2016) The slicer activity of ARGONAUTE1 Is required specifically for the phasing, not production, of trans-acting short interfering RNAs in Arabidopsis. Plant Cell 28(7):1563–1580. doi: 10.1105/tpc1600121Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320(5880):1185–1190. doi: 10.1126/science1159151Li S, Le B, Ma X, Li S, You C, Yu Y, Zhang B, Liu L, Gao L, Shi T, Zhao Y, Mo B, Cao X, Chen X (2016) Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. Elife 5:e22750. doi: 10.7554/eLife22750Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100(17):9779–9784. doi: 10.1073/pnas1630797100Iwakawa HO, Tomari Y (2013) Molecular insights into microRNA-mediated translational repression in plants. Mol Cell 52(4):591–601. doi: 10.1016/jmolcel201310033Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B, Zhang F, Raikhel N, Jiang L, Chen X (2013) MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153(3):562–574. doi: 10.1016/jcell201304005Li JF, Chung HS, Niu Y, Bush J, McCormack M, Sheen J (2013) Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 25(5):1507–1522. doi: 10.1105/tpc113112235Liu MJ, SH W, JF W, Lin WD, YC W, Tsai TY, Tsai HL, SH W (2013) Translational landscape of photomorphogenic Arabidopsis. Plant Cell 25(10):3699–3710. doi: 10.1105/tpc113114769Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15(11):2730–2741. doi: 10.1105/tpc016238Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303(5666):2022–2025. doi: 10.1126/science1088060Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3β€² UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49(4):683–693. doi: 10.1111/j1365-313X200602983xYang L, Wu G, Poethig RS (2012) Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proc Natl Acad Sci U S A 109(1):315–320. doi: 10.1073/pnas1114673109Mallory AC, Hinze A, Tucker MR, Bouche N, Gasciolli V, Elmayan T, Lauressergues D, Jauvion V, Vaucheret H, Laux T (2009) Redundant and specific roles of the ARGONAUTE proteins AGO1 and ZLL in development and small RNA-directed gene silencing. PLoS Genet 5(9):e1000646. doi: 10.1371/journalpgen1000646Hou CY, Lee WC, Chou HC, Chen AP, Chou SJ, Chen HM (2016) Global analysis of truncated RNA ends reveals new insights into ribosome stalling in plants. Plant Cell 28(10):2398–2416. doi: 10.1105/tpc1600295Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25(7):2383–2399. doi: 10.1105/tpc113113159Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20(14):1885–1898. doi: 10.1101/gad1424106Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103(11):4034–4039. doi: 10.1073/pnas0510928103Schirle NT, MacRae IJ (2012) The crystal structure of human Argonaute2. Science 336(6084):1037–1040. doi: 10.1126/science1221551Pfaff J, Hennig J, Herzog F, Aebersold R, Sattler M, Niessing D, Meister G (2013) Structural features of Argonaute-GW182 protein interactions. Proc Natl Acad Sci U S A 110(40):E3770–E3779. doi: 10.1073/pnas1308510110Ma X, Kim EJ, Kook I, Ma F, Voshall A, Moriyama E, Cerutti H (2013) Small interfering RNA-mediated translation repression alters ribosome sensitivity to inhibition by cycloheximide in Chlamydomonas reinhardtii. Plant Cell 25(3):985–998. doi: 10.1105/tpc113109256Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220. doi: 10.1038/nrg2719Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2(5):E104. doi: 10.1371/journalpbio0020104Herr AJ, Jensen MB, Dalmay T, Baulcombe DC (2005) RNA polymerase IV directs silencing of endogenous DNA. Science 308(5718):118–120. doi: 10.1126/science1106910Kanno T, Huettel B, Mette MF, Aufsatz W, Jaligot E, Daxinger L, Kreil DP, Matzke M, Matzke AJ (2005) Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet 37(7):761–765. doi: 10.1038/ng1580Onodera Y, Haag JR, Ream T, Costa Nunes P, Pontes O, Pikaard CS (2005) Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120(5):613–622. doi: 10.1016/jcell200502007Haag JR, Ream TS, Marasco M, Nicora CD, Norbeck AD, Pasa-Tolic L, Pikaard CS (2012) In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol Cell 48(5):811–818. doi: 10.1016/jmolcel201209027Pontes O, Li CF, Costa Nunes P, Haag J, Ream T, Vitins A, Jacobsen SE, Pikaard CS (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126(1):79–92. doi: 10.1016/jcell200605031Li CF, Pontes O, El-Shami M, Henderson IR, Bernatavichute YV, Chan SW, Lagrange T, Pikaard CS, Jacobsen SE (2006) An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126(1):93–106. doi: 10.1016/jcell200605032El-Shami M, Pontier D, Lahmy S, Braun L, Picart C, Vega D, Hakimi MA, Jacobsen SE, Cooke R, Lagrange T (2007) Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev 21(20):2539–2544. doi: 10.1101/gad451207Li CF, Henderson IR, Song L, Fedoroff N, Lagrange T, Jacobsen SE (2008) Dynamic regulation of ARGONAUTE4 within multiple nuclear bodies in Arabidopsis thaliana. PLoS Genet 4(2):e27. doi: 10.1371/journalpgen0040027Bies-Etheve N, Pontier D, Lahmy S, Picart C, Vega D, Cooke R, Lagrange T (2009) RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. EMBO Rep 10(6):649–654. doi: 10.1038/embor200931He XJ, Hsu YF, Zhu S, Wierzbicki AT, Pontes O, Pikaard CS, Liu HL, Wang CS, Jin H, Zhu JK (2009) An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 137(3):498–508. doi: 10.1016/jcell200904028Zhong X, Du J, Hale CJ, Gallego-Bartolome J, Feng S, Vashisht AA, Chory J, Wohlschlegel JA, Patel DJ, Jacobsen SE (2014) Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157(5):1050–1060. doi: 10.1016/jcell201403056Cao X, Jacobsen SE (2002) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci U S A 99(Suppl 4):16491–16498. doi: 10.1073/pnas162371599Lahmy S, Pontier D, Bies-Etheve N, Laudie M, Feng S, Jobet E, Hale CJ, Cooke R, Hakimi MA, Angelov D, Jacobsen SE, Lagrange T (2016) Evidence for ARGONAUTE4-DNA interactions in RNA-directed DNA methylation in plants. Genes Dev 30(23):2565–2570. doi: 10.1101/gad289553116Zheng X, Zhu J, Kapoor A, Zhu JK (2007) Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J 26(6):1691–1701. doi: 10.1038/sjemboj7601603Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM, Schwach F, Doonan JH, Baulcombe DC (2010) The Arabidopsis RNA-directed DNA methylation Argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22(2):321–334. doi: 10.1105/tpc109072199Eun C, Lorkovic ZJ, Naumann U, Long Q, Havecker ER, Simon SA, Meyers BC, Matzke AJ, Matzke M (2011) AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana. PLoS One 6(10):e25730. doi: 10.1371/journalpone0025730Duan CG, Zhang H, Tang K, Zhu X, Qian W, Hou YJ, Wang B, Lang Z, Zhao Y, Wang X, Wang P, Zhou J, Liang G, Liu N, Wang C, Zhu JK (2015) Specific but interdependent functions for Arabidopsis AGO4 and AGO6 in RNA-directed DNA methylation. EMBO J 34(5):581–592. doi: 10.15252/embj201489453McCue AD, Panda K, Nuthikattu S, Choudury SG, Thomas EN, Slotkin RK (2015) ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation. EMBO J 34(1):20–35. doi: 10.15252/embj201489499Zhang Z, Liu X, Guo X, Wang XJ, Zhang X (2016) Arabidopsis AGO3 predominantly recruits 24-nt small RNAs to regulate epigenetic silencing. Nat Plants 2(5):16049. doi: 10.1038/nplants201649Wu J, Yang Z, Wang Y, Zheng L, Ye R, Ji Y, Zhao S, Ji S, Liu R, Xu L, Zheng H, Zhou Y, Zhang X, Cao X, Xie L, Wu Z, Qi Y, Li Y (2015) Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. Elife 4:05733. doi: 10.7554/eLife05733Wu J, Yang R, Yang Z, Yao S, Zhao S, Wang Y, Li P, Song X, Jin L, Zhou T, Lan Y, Xie L, Zhou X, Chu C, Qi Y, Cao X, Li Y (2017) ROS accumulation and antiviral defence control by microRNA528 in rice. Nat Plants 3:16203. doi: 10.1038/nplants2016203Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, White CI, Rendtlew Danielsen JM, Yang YG, Qi Y (2012) A role for small RNAs in DNA double-strand break repair. Cell 149(1):101–112. doi: 10.1016/jcell201203002Oliver C, Santos JL, Pradillo M (2014) On the role of some ARGONAUTE proteins in meiosis and DNA repair in Arabidopsis thaliana. Front Plant Sci 5:177. doi: 10.3389/fpls201400177Ye R, Chen Z, Lian B, Rowley MJ, Xia N, Chai J, Li Y, He XJ, Wierzbicki AT, Qi Y (2016) A Dicer-independent route for biogenesis of siRNAs that direct DNA methylation in Arabidopsis. Mol Cell 61(2):222–235. doi: 10.1016/jmolcel201511015Dolata J, Bajczyk M, Bielewicz D, Niedojadlo K, Niedojadlo J, Pietrykowska H, Walczak W, Szweykowska-Kulinska Z, Jarmolowski A (2016) Salt stress reveals a new role for ARGONAUTE1 in miRNA biogenesis at the transcriptional and posttranscriptional levels. Plant Physiol 172(1):297–312. doi: 10.1104/pp1600830Singh RK, Gase K, Baldwin IT, Pandey SP (2015) Molecular evolution and diversification of the Argonaute family of proteins in plants. BMC Plant Biol 15(1):23. doi: 10.1186/s12870-014-0364-6Singh RK, Pandey SP (2015) Evolution of structural and functional diversification among plant Argonautes. Plant Signal Behav 10(10):e1069455. doi: 10.1080/1559232420151069455Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17(1):170–180. doi: 10.1093/emboj/171170Kidner CA, Martienssen RA (2004) Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428(6978):81–84. doi: 10.1038/nature02366Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17(5):1343–1359. doi: 10.1105/tpc105031625Yang L, Huang W, Wang H, Cai R, Xu Y, Huang H (2006) Characterizations of a hypomorphic argonaute1 mutant reveal novel AGO1 functions in Arabidopsis lateral organ development. Plant Mol Biol 61(1-2):63–78. doi: 10.1007/s11103-005-5992-7Kidner CA, Martienssen RA (2005) The developmental role of microRNA in plants. Curr Opin Plant Biol 8(1):38–44. doi: 10.1016/jpbi200411008Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009) Rice microRNA effector complexes and targets. Plant Cell 21(11):3421–3435. doi: 10.1105/tpc109070938Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13(7):350–358. doi: 10.1016/jtplants200804007Hunter C, Sun H, Poethig RS (2003) The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol 13(19):1734–1739Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouche N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16(9):927–932. doi: 10.1016/jcub200603035Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16(9):939–944. doi: 10.1016/jcub200603065Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127(3):565–577. doi: 10.1016/jcell200609032Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz G-NM, Poethig SR (2006) Trans-acting siRNA-mediated repre
    corecore