16 research outputs found

    Beta Drift: Forecasting the Manifold Relationships between Students and their Pursuit of STEM Careers

    Get PDF
    The purpose of this study was to examine the extent to which motivational and persistence factors predict the occupational career choices of underrepresented students in their pursuit of a STEM career. Data selected from the High School Longitudinal Study beginning with the base year through the fourth wave were employed in a large-scale multinomial regression analysis. Anticipated STEM occupation at the age of 30 was examined across six years of complex survey data using multiple taxonometric definitions. Social Cognitive Career Theory provided the theoretical framework for defining relevant factors affecting this STEM pursuit construct. The findings from the study suggest that by varying student perspectives on their expected STEM careers, the resulting pathway of pursuit is affected by a different set of predictors. Typographic models developed through fitting multinomial logistic regression models also suggest that female students are propelled into specific STEM careers through early mathematics identity, mid-study science utility, and an evolving dynamic between parent and student expectations. The results additionally highlight race and ethnicity differences which more closely, though less significantly, mirror those of female students. The overall results of these findings raise questions about the continued use of a STEM pipeline metaphor in describing student pursuit. Moreover, adjacent policies, theoretical frameworks, and research methods aligned to this construct should be reviewed on how they portray an inaccurate picture of pursuit amongst underrepresented students seeking STEM careers

    All Advanced Placement (AP) Computer Science is Not Created Equal: A Comparison of AP Computer Science A and Computer Science Principles

    Get PDF
    This article compares the two most prominent courses of Advanced Placement (AP) computer science study offered throughout 9-12 grades in the U.S. The structure, guidelines, components, and exam formats of the traditional AP Computer Science A course and the relatively newer AP Computer Science Principles course were compared to examine differences in content and emphases. A depth-of-learning analysis was conducted employing Bloom’s Revised Taxonomy to examine potential differences in rigor and challenge represented by the two options, particularly as it relates to acquiring computer programming proficiency. Analyses suggest structural differences in both course content and end-of-course exam components likely result in less depth and rigor in the new Computer Science Principles course as compared to the Computer Science A course. A lower minimum standard for learning programming skills in the Computer Science Principles course was observed, making it a less viable option for students looking to acquire skills transferable to future computer science study or employment. The potential implications for students choosing the new course over the traditional offering, as well as for schools opting for the new course as its sole or primary offering are discussed

    Advanced Placement (AP) Computer Science Principles: Searching for Equity in a Two-Tiered Solution to Underrepresentation

    Get PDF
    The purpose of this research is to examine the relationship between students’ participation in the two high school AP computer science exam options and their selected fields of study once they enter post-secondary education. Two studies using national public-use datasets of participation and performance were conducted. Study 1 compared score distributions for the traditional Computer Science A exam to those of the newer Computer Science Principles exam during its first two years of implementation. In Study 1, Chi-square analyses revealed large differences in performance between the two exams, with the Computer Science Principles scores clustering more around marginal pass rates. Descriptive data indicate that African American, Latino, and female students participated in larger proportions on the new exam, whereas traditionally overrepresented groups are continuing to opt more for the traditional Computer Science A course. In Study 2, logistic regression analyses were conducted on the 2016 second follow-up data collection of the High School Longitudinal Study 2009 (HSLS:09). Those analyses revealed that 11th Grade enrollment in computer science courses that concentrate on computer programming significantly predicted selection of a STEM major as the first declared major after high school. Although students who enrolled in Computer Science A were five times as likely to declare a STEM major, a comparison of the curricula and assessments for the two courses suggests that the Computer Science Principles exam places far less emphasis on programming. The potential implications of the differential foci and emphases of the two courses are discussed

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Stopping State Repression: An Examination of Spells, 1976-2004

    No full text

    How Market Culture Alleviates Ethnic Tensions: Theory and Evidence

    No full text
    corecore