597 research outputs found

    Soft gluons and gauge-invariant subtractions in NLO parton-shower Monte Carlo event generators

    Get PDF
    We address the problem of decomposing graphs in perturbative QCD into terms associated with particular regions. Motivated by asking how to incorporate next-to-leading order (NLO) QCD corrections in parton-shower algorithms, we require that: (a) The integrand for the hard part is to be integrable even if the corrections are applied to a process that is not infrared and collinear safe. (b) The splitting between the terms should be defined gauge-invariantly. (c) The dependence on cut-offs should obey homogeneous evolution equations. In the context of one-gluon-emission graphs for deep inelastic scattering, we explain a subtractive technique that is based on gauge-invariant Wilson-line operators. Appropriate organization of subtractions involving the soft region allows a connection to previous work where evolution equations with respect to the directions of the Wilson lines have been derived.Comment: 11 pages, 2 figures; v2: comments and references added, results unchange

    Color transparency in deeply inelastic diffraction

    Get PDF
    We suggest a simple physical picture for the diffractive parton distributions that appear in diffractive deeply inelastic scattering. In this picture, partons impinging on the proton can have any transverse separation, but only when the separation is small can they penetrate the proton without breaking it up. By comparing the predictions from this picture with the diffractive data from HERA, we determine rough values for the small separations that dominate the diffraction process.Comment: 10 pages, 2 figures; v2: citations added, two comments revised and expanded, results unchange

    Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements

    Full text link
    The Sivers transverse single spin asymmetry (TSSA) is calculated and compared at different scales using the TMD evolution equations applied to previously existing extractions. We apply the Collins-Soper-Sterman (CSS) formalism, using the version recently developed by Collins. Our calculations rely on the universality properties of TMD-functions that follow from the TMD-factorization theorem. Accordingly, the non-perturbative input is fixed by earlier experimental measurements, including both polarized semi-inclusive deep inelastic scattering (SIDIS) and unpolarized Drell-Yan (DY) scattering. It is shown that recent COMPASS measurements are consistent with the suppression prescribed by TMD evolution.Comment: 4 pages, 2 figures. Version published in Physical Review Letter

    TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions

    Get PDF
    Transverse-momentum-dependent distributions (TMDs) are central in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library, TMDlib, of fits and parameterisations for transverse-momentum-dependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.Comment: version 2, referring to TMDlib 1.0.2 - comments and references adde

    LHC sensitivity to Z'/W' states in composite Higgs models

    Full text link
    Using the 4-Dimensional Composite Higgs Model (4DCHM) realization of the minimal composite Higgs scenario, we discuss the Large Hadron Collider (LHC) sensitivity to new physics signals from multiple Z′Z^\prime and W′W^\prime broad resonances. We illustrate the role of systematic uncertainties due to QCD effects encoded in parton distribution functions for experimental searches in leptonic channels. We show that, by reducing this systematics through the combination of high-precision measurements of Standard Model (SM) lepton-charge and forward-backward asymmetries near the SM vector-boson peak, the sensitivity to the new physics signals can be greatly enhanced.Comment: 6 pages, 1 figure, Contribution to ICHEP2022 Conference Proceedings based on arXiv:2111.09698, arXiv:2206.1246

    The influence of long- and short-term volcanic strain on aquifer pressure:a case study from Soufrière Hills Volcano, Montserrat (W.I.)

    Get PDF
    Aquifers are poroelastic bodies that respond to strain by changes in pore pressure. Crustal deformation due to volcanic processes induces pore pressure variations that are mirrored in well water levels. Here, we investigate water level changes in the Belham valley on Montserrat over the course of two years (2004-2006). Using finite element analysis, we simulate crustal deformation due to different volcanic strain sources and the dynamic poroelastic aquifer response. While some additional hydrological drivers cannot be excluded, we suggest that a poroelastic strain response of the aquifer system in the Belham valley is a possible explanation for the observed water level changes. According to our simulations, the shallow Belham aquifer responds to a steadily increasing sediment load due to repeated lahar sedimentation in the valley with rising aquifer pressures. A wholesale dome collapse in May 2006 on the other hand induced dilatational strain and thereby a short-term water level drop in a deeper-seated aquifer, which caused groundwater leakage from the Belham aquifer and thereby induced a delayed water level fall in the wells. The system thus responded to both gradual and rapid transient strain associated with the eruption of Soufrière Hills Volcano (Montserrat). This case study gives field evidence for theoretical predictions on volcanic drivers behind hydrological transients, demonstrating the potential of hydrological data for volcano monitoring. Interrogation of such data can provide valuable constraints on stress evolution in volcanic systems and therefore complement other monitoring systems. The presented models and inferred results are conceptually applicable to volcanic areas worldwide

    Flavor-singlet light-cone amplitudes and radiative Upsilon decays in SCET

    Full text link
    We study the evolution of flavor-singlet, light-cone amplitudes in the soft-collinear effective theory (SCET), and reproduce results previously obtained by a different approach. We apply our calculation to the color-singlet contribution to the photon endpoint in radiative Upsilon decay. In a previous paper, we studied the color-singlet contributions to the endpoint, but neglected operator mixing, arguing that it should be a numerically small effect. Nevertheless the mixing needs to be included in a consistent calculation, and we do just that in this work. We find that the effects of mixing are indeed numerically small. This result combined with previous work on the color-octet contribution and the photon fragmentation contribution provides a consistent theoretical treatment of the photon spectrum in radiative Upsilon decay.Comment: 19 pages with 8 figure

    The CCFM Monte Carlo generator CASCADE 2.2.0

    Get PDF
    CASCADE is a full hadron level Monte Carlo event generator for ep, \gamma p and p\bar{p} and pp processes, which uses the CCFM evolution equation for the initial state cascade in a backward evolution approach supplemented with off - shell matrix elements for the hard scattering. A detailed program description is given, with emphasis on parameters the user wants to change and variables which completely specify the generated events

    Soft Photon Spectrum in Orthopositronium and Vector Quarkonium Decays

    Get PDF
    QED gauge invariance, when combined with analyticity, leads to constraints on the low energy end of the emitted photon spectra. This is known as Low's theorem. It is shown that the Ore-Powell result, as well as further developments for the orthopositronium differential decay rate, are in contradiction with Low's theorem, i.e. that their predicted soft photon spectra are incorrect. A solution to this problem is presented. The implications for the orthopositronium lifetime puzzle, the charmonium rho-pi puzzle, the prompt photon spectrum in inclusive quarkonium decays and the extraction of alpha_S from quarkonium annihilation rates are briefly commented.Comment: LaTeX, 10 page

    Strain field analysis on Montserrat (W.I.) as tool for assessing permeable flow paths in the magmatic system of Soufrière Hills Volcano

    Get PDF
    Strain dilatometers have been operated on the volcanic island of Montserrat (West Indies) for more than a decade and have proven to be a powerful technique to approach short-term dynamics in the deformational field in response to pressure changes in the magmatic system of the andesitic dome-building Soufrière Hills Volcano (SHV). We here demonstrate that magmatic activity in each of the different segments of the SHV magmatic system (shallow dyke-conduit, upper and lower magma chambers) generates a characteristic strain pattern that allows the identification of operating sources in the plumbing system based on a simple scheme of amplitude ratios. We use this method to evaluate strain data from selected Vulcanian explosions and gas emission events that occurred at SHV between 2003 and 2012. Our results show that the events were initiated by a short phase of contraction of either one or both magma chambers and a simultaneous inflation of the shallow feeder system. The initial phase of the events usually lasted only tens to hundreds of seconds before the explosion/gas emission started and the system recovered. The short duration of this process points at rapid transport of fluids rather than magma ascent to generate the pressure changes. We suggest the propagation of tensile hydraulic fractures as viable mechanism to provide a pathway for fluid migration in the magmatic system at the observed time scale. Fluid mobilization was initiated by a sudden destabilization of large pockets of already segregated fluid in the magma chambers. Our study demonstrates that geodetic observables can provide unprecedented insights into complex dynamic processes within a magmatic system commonly assessed by theoretical modeling and petrologic observations. Key Points Strain data analysis from explosions/degassing events at Soufriere Hills Volcano Pressure release deep within the magmatic system sec-min prior to events Rapid gas rise from magma reservoir to surface via tensile hydraulic fractures © 2014. American Geophysical Union. All Rights Reserved
    • …
    corecore