12 research outputs found

    Activity and in situ DRIFT studies on vanadia catalysts during oxidative dehydrogenation of sulfur-contaminated methanol

    Get PDF
    Silica-titania (70/30) supported vanadium catalysts were prepared, characterized, and studied in oxidative dehydrogenation of sulfur-contaminated methanol. The quality of vanadia species is dependent on temperature and gas conditions during preparation, support type, support specific surface area and VOx surface density. For example, upon heating the amount of V2O5 decrease along with formation of polymeric species. Such changes may occur also during the catalytic reaction. The reaction experiments and characterization results showed that the stability of polymeric vanadia species and total acidity has a connection with better formaldehyde production performance. The best performance was observed for N2-calcined silica-titania catalyst. Easy reducibility of the catalyst, as in the case of reference catalysts, leads to further oxidation of formaldehyde.publishedVersionPeer reviewe

    Synchrotron radiation based characterization of structural evolution of alkali halide clusters

    No full text
    Abstract In this work, evolution of structural properties of anhydrous and hydrated alkali halide clusters are studied using synchrotron radiation based photoelectron spectroscopy. Alkali metal core level spectra of small anhydrous RbCl, RbBr, CsCl and CsBr clusters indicate a NaCl structure. For larger CsBr clusters a structural phase transition to CsCl structure is likely the case. Alkali halide core level spectra of mixed RbBr-water clusters indicate that at dilute concentration the salt is dissolved by the water cluster but ion pairing increases with concentration. Modeling of gas phase cluster formation and electronic structure calculations of core level chemical shifts are used to interpret the experimental spectra

    Experimental observation of structural phase transition in CsBr clusters

    No full text
    Formation and growth of CsBr clusters embedded in unsupported Ar clusters was studied using synchrotron radiation photoelectron spectroscopy. The development of the core-level electronic structure for cluster sizes between a few and a few hundred atoms contained information about the local coordination of the constituent particles. The experimental results indicate that a gradual structural phase transition from NaCl structure to CsCl structure for CsBr clusters takes place at around 160 atoms per cluster

    Probing RbBr solvation in freestanding sub-2 nm water clusters

    No full text
    Concentration dependent solvation of RbBr in freestanding sub-2 nm water clusters was studied using core level photoelectron spectroscopy with synchrotron radiation. Spectral features recorded from dilute to saturated clusters indicate that either solvent shared or contact ion pairs are present in increasing amount when the concentration exceeds 2 mol kg-1. For comparison, spectra from anhydrous RbBr clusters are also presented

    Probing RbBr solvation in freestanding sub-2nm water clusters

    No full text
    Abstract Concentration dependent solvation of RbBr in freestanding sub-2 nm water clusters was studied using core level photoelectron spectroscopy with synchrotron radiation. Spectral features recorded from dilute to saturated clusters indicate that either solvent shared or contact ion pairs are present in increasing amount when the concentration exceeds 2 mol kg−1. For comparison, spectra from anhydrous RbBr clusters are also presented

    Core and valence level photoelectron spectroscopy of nanosolvated KCl

    No full text
    Abstract The solvation of alkali and halide ions in the aqueous environment has been a subject of intense experimental and theoretical research with multidisciplinary interests; yet, a comprehensive molecular-level understanding has still not been obtained. In recent years, electron spectroscopy has been increasingly applied to study the electronic and structural properties of aqueous ions with implications, especially in atmospheric chemistry. In this work, we report core and valence level (Cl 2p, Cl 3p, and K 3p) photoelectron spectra of the common alkali halide, KCl, doped in gas-phase water clusters in the size range of a few hundred water molecules. The results indicate that the electronic structure of these nanosolutions shows a distinct character from that observed at the liquid–vapor interface in liquid microjets and ambient pressure setups. Insights are provided into the unique solvation properties of ions in a nanoaqueous environment, emerging properties of bulk electrolyte solutions with growing cluster size, and sensitivity of the electronic structure to varying solvation configurations

    Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices

    No full text
    Abstract Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10−72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10−4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10−5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids

    New insights into the genetic etiology of Alzheimer’s disease and related dementias

    No full text
    Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Genetic architecture of human plasma lipidome and its link to cardiovascular disease

    No full text
    Abstract Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD
    corecore