12 research outputs found

    Temperature-induced phase transition and Li self-diffusion in Li2C2: A first-principles study

    No full text
    Lithium carbide, Li2C2, is a fascinating material that combines strong covalent and weak ionic bonding resulting in a wide range of unusual properties. The mechanism of its phase transition from the ground-state orthorhombic (Immm) to the high-temperature cubic (Fm (3) over barm) crystal structure is not well understood and here we elucidate it with help of first-principles calculations. We show that stabilization of the cubic phase is a result of a temperature-induced disorientation of the C-C dumbbells and their further thermal rotations. Due to these rotations rather large deviatoric stress, which is associated with the dumbbell alignment along one of the crystallographic axes, averages out making the cubic structure mechanically stable. At high temperature we observe a type-II superionic transition to a state of high Li self-diffusion involving collective ionic motion mediated by the formation of Frenkel pairs.Funding Agencies|Swedish Research Council (VR) [2014-4750, 2014-3980]; Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University [2009-00971]; Carl Tryggers Stiftelse (CTS) [16:198]</p

    The s−p Bonded Representatives of the Prominent BaAl4 Structure Type:  A Case Study on Structural Stability of Polar Intermetallic Network Structures

    No full text
    This work presents a detailed, combined experimental and theoretical study on the structural stability of s−p bonded compounds with the BaAl4 structure type (space group I4/mmm, Z = 2) as part of a broad program to investigate the complex questions of structure formation and atomic arrangements in polar intermetallics. From ab initio calculations employing pseudopotentials and a plane wave basis set, we extracted optimized structural parameters, binding energies, and the electronic structure of the systems AeX(III)4, AeX(II)2X(IV)2, AeX(II)2X(III)2 (Ae = Ca, Sr, Ba; X(II) = Mg, Zn; X(III) = Al, Ga; X(IV) = Si, Ge). For all systems we found a pronounced pseudo-gap in the density of states separating network X42- bonding from antibonding electronic states that coincides with the Fermi level for an electron count of 14 electrons per formula unit, the optimum value for stable BaAl4-type polar intermetallics. However, the synthesis and structural characterization (from X-ray single crystal and powder diffraction data) of the new compounds AeZn2-ήAl2+ή, AeZn2-ήGa2+ή (Ae = Ca, Sr, Ba; ή = 0−0.2) and AeMg0.9Al3.1, AeMg1.7Ga2.3 (Ae = Sr, Ba) manifested that electron deficiency is rather frequent for BaAl4-type polar intermetallics. The site preference for different “X” elements in the ternary systems was quantified by calculating “coloring energies”, which, for some systems, was strongly dependent on the size of the electropositive Ae component. The Ae2+ cations decisively influence the nearest neighbor distances in the encapsulating polyanionic networks X42- and the structures of these networks are surprisingly flexible to the size of the Ae component without changing the overall bonding picture. A monoclinically distorted variant of the BaAl4 structure occurs when the cations become too small for matching the size of encapsulating X42- cages. An even larger size mismatch leads to the formation of the EuIn4 structure type.Reprinted (adapted) with permission from J. Am. Chem. Soc., 2002, 124 (16), pp 4371–4383. Copyright 2002 American Chemical Society.</p

    Structural Analysis of the Gd-Au-Al 1/1 Quasicrystal Approximant Phase across Its Composition-Driven Magnetic Property Changes

    No full text
    Gd14AuxAl86-x Tsai-type 1/1 quasicrystal approximants (ACs) exhibit three magnetic orders that can be finely tuned by the valence electron concentration (e/a ratio). This parameter has been considered to be crucial for controlling the long-range magnetic order in quasicrystals (QCs) and ACs. However, the nonlinear trend of the lattice parameter as a function of Au concentration suggests that Gd14AuxAl86-x 1/1 ACs are not following a conventional solid solution behavior. We investigated Gd14AuxAl86-x samples with x values of 52, 53, 56, 61, 66, and 73 by single-crystal X-ray diffraction. Our analysis reveals that increasing Au/Al ordering with increasing x leads to distortions in the icosahedral shell built of the Gd atoms and that trends observed in the interatomic Gd-Gd distances closely correlate with the magnetic property changes across different x values. Our results demonstrate that the e/a ratio alone may be an oversimplified concept for investigating the long-range magnetic order in 1/1 ACs and QCs and that the mixing behavior of the nonmagnetic elements Au and Al plays a significant role in influencing the magnetic behavior of the Gd1(4)Au(x)Al(86-x) 1/1 AC system. These findings will contribute to improved understanding towards tailoring magnetic properties in emerging materials

    The many phases of CaC2

    Get PDF
    Polymorphic CaC2 was prepared by reacting mixtures of CaH2 and graphite with molar ratios between 1:1.8 and 1:2.2 at temperatures between 700 and 1400 degrees C under dynamic vacuum. These conditions provided a well controlled, homogeneous, chemical environment and afforded products with high purity. The products, which were characterized by powder X-ray diffraction, solid state NMR and Raman spectroscopy, represented mixtures of the three known polymorphs, tetragonal CaC2-I and monoclinic CaC2-II and -III. Their proportion is dependent on the nominal C/CaH2 ratio of the reaction mixture and temperature. Reactions with excess carbon produced a mixture virtually free from CaC2-I, whereas high temperatures (above 1100 degrees C) and C-deficiency favored the formation of CaC2-I. From first principles calculations it is shown that CaC2-I is dynamically unstable within the harmonic approximation. This indicates that existing CaC2-I is structurally/dynamically disordered and may possibly even occur as slightly carbon-deficient phase CaC2-delta. It is proposed that monoclinic II is the ground state of CaC2 and polymorph III is stable at temperatures above 200 degrees C. Tetragonal I represents a metastable, heterogeneous, phase of CaC2. It is argued that a complete understanding of the occurrence of three room temperature modifications of CaC2 will require a detailed characterization of compositional and structural heterogeneities within the high temperature form CaC2-IV, which is stable above 450 degrees C. The effect of high pressure on the stability of the monoclinic forms of CaC2 was studied in a diamond anvil cell using Raman spectroscopy. CaC2-II and -III transform into tetragonal CaC2-I at about 4 and 1GPa, respectively. (C) 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Examination of the critical behavior and magnetocaloric effect of the ferromagnetic Gd-Au-Si quasicrystal approximants

    No full text
    We investigate the critical behavior and magnetocaloric effects of the Gd-Au-Si (GAS) ferromagnetic quasicrystal approximants, Gd13.7Au72.7Si13.6 [referred to as GAS(0)] and Gd15.4Au68.6Si16.0 [GAS(100)]. The former is a conventional Tsai-type 1/1 approximant crystal, while the latter has a slightly different atomic decoration from the Tsai type (thus referred to as “pseudo-Tsai” type). Their critical exponents at the ferromagnetic transitions are close to those of the mean-field theory. Both GAS systems exhibit an interesting magnetic-field dependence of the specific heat, which is reflected in the behavior of their magnetocaloric effect (MCE). The MCE is characterized by an adiabatic cooling (heating) effect over a relatively broad temperature range below ∌30 K, which stems from a broad feature in the specific heat

    Layered Zinc Hydroxide Dihydrate, Zn5(OH)10·2H2O, from Hydrothermal Conversion of Δ-Zn(OH)2 at Gigapascal Pressures and its Transformation to Nanocrystalline ZnO

    No full text
    Layered zinc hydroxides (LZHs) with the general formula (Zn2+)x(OH–)2x−my(Am–)y·nH2O (Am– = Cl–, NO3–, ac–, SO42–, etc) are considered as useful precursors for the fabrication of functional ZnO nanostructures. Here, we report the synthesis and structure characterization of the hitherto unknown “binary” representative of the LZH compound family, Zn5(OH)10·2H2O, with Am– = OH–, x = 5, y = 2, and n = 2. Zn5(OH)10·2H2O was afforded quantitatively by pressurizing mixtures of Δ-Zn(OH)2 (wulfingite) and water to 1–2 GPa and applying slightly elevated temperatures, 100–200 °C. The monoclinic crystal structure was characterized from powder X-ray diffraction data (space group C2/c, a = 15.342(7) Å, b = 6.244(6) Å, c = 10.989(7) Å, ÎČ = 100.86(1)°). It features neutral zinc hydroxide layers, composed of octahedrally and tetrahedrally coordinated Zn ions with a 3:2 ratio, in which H2O is intercalated. The interlayer d(200) distance is 7.53 Å. The H-bond structure of Zn5(OH)10·2H2O was analyzed by a combination of infrared/Raman spectroscopy, computational modeling, and neutron powder diffraction. Interlayer H2O molecules are strongly H-bonded to five surrounding OH groups and appear orientationally disordered. The decomposition of Zn5(OH)10·2H2O, which occurs thermally between 70 and 100 °C, was followed in an in situ transmission electron microscopy study and ex situ annealing experiments. It yields initially 5–15 nm sized hexagonal w-ZnO crystals, which, depending on the conditions, may intergrow to several hundred nm-large two-dimensional, flakelike crystals within the boundary of original Zn5(OH)10·2H2O particles

    Hydrogen induced structure and property changes in Eu3Si4

    No full text
    Hydrides Eu3Si4H2-X were obtained by exposing the Zintl phase Eu3Si4 to a hydrogen atmosphere at a pressure of 30 bar and temperatures from 25 to 300 degrees C. Structural analysis using powder X-ray diffraction (PXRD) data suggested that hydrogenations in a temperature range 25-200 degrees C afford a uniform hydride phase with an orthorhombic structure (Immm, a approximate to 4.40 angstrom, b approximate to 3.97 angstrom, c approximate to 19.8 angstrom), whereas at 300 degrees C mixtures of two orthorhombic phases with c approximate to 19.86 and approximate to 19.58 angstrom were obtained. The assignment of a composition Eu3Si4H2+x is based on first principles DFT calculations, which indicated a distinct crystallographic site for H in the Eu3Si4 structure. In this position, H atoms are coordinated in a tetrahedral fashion by Eu atoms. The resulting hydride Eu3Si4H2 is stable by -0.46 eV/H atom with respect to Eu3Si4 and gaseous H-2. Deviations between the lattice parameters of the DFT optimized Eu3Si4H2 structure and the ones extracted from PXRD patterns pointed to the presence of additional H in interstitials also involving Si atoms. Subsequent DFT modeling of compositions Eu3Si4H3 and Eu3Si4H4 showed considerably better agreement to the experimental unit cell volumes. It was then concluded that the hydrides of Eu3Si4 have a composition Eu3Si4H2+x (

    Analysis of Dihydrogen Bonding in Ammonium Borohydride

    No full text
    The structural and vibrational properties of ammonium borohydride, NH4BH4, have been examined by first-principles density functional theory (DFT) calculations and inelastic neutron scattering (INS). The H disordered crystal structure of NH4BH4 is composed of the tetrahedral complex ions NH4+ and BH4-, which are arranged as in the fcc NaCl structure and linked by intermolecular dihydrogen bonding. Upon cooling, the INS spectra revealed a structural transition between 45 and 40 K. The reversible transition occurs upon heating between 46 and 49 K. In the low-temperature form reorientational dynamics are frozen. The libration modes for BH4- and NH4+ are near 300 and 200 cm(-1), respectively. Upon entering the fcc high-temperature form, NH4+ ions attain fast reorientational dynamics, as indicated in the disappearance of the NH4+ libration band, whereas BH4- ions become significantly mobile only at temperatures above 100 K. The vibrational behavior of BH4- ions in NH4BH4 compares well to the heavier alkali metal borohydrides, NaBH4-CsBH4. DFT calculations revealed a nondirectional nature of the dihydrogen bonding in NH4BH4 with only weak tendency for long-range order. Different rotational configurations of complex ions appear quasi-degenerate, which is reminiscent of glasses.Funding Agencies|Nordforsk within the project FunHy; Swedish research council (VR)Swedish Research Council; Carl Tryggers Stiftelse (CTS) for Vetenskaplig Forskning; Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]</p
    corecore