174 research outputs found

    High-pressure study of substrate material ScAlMgO4

    Full text link
    We report on the structural properties of ScAlMgO4 studied under quasi-hydrostatic pressure using synchrotron high-pressure x-ray diffraction up to 40 GPa. We also report on single-crystal studies of ScAlMgO4 performed at 300 K and 100 K. We found that the low-pressure phase remains stable up to 24 GPa. At 28 GPa, we detected a reversible phase transformation. The high-pressure phase is assigned to a monoclinic distortion of the low-pressure phase. No additional phase transition is observed up to 40 GPa. In addition, the equation of state, compressibility tensor, and thermal expansion coefficients of ScAlMgO4 are determined. The bulk modulus of ScAlMgO4 is found to be 143(8) GPa, with a strong compressibility anisotropy. For the trigonal low-pressure phase, the compressibility along the c-axis is twice than perpendicular one. A perfect lattice match with ZnO is retained under pressure in the pressure range of stability of wurtzite ZnO.Comment: 22 pages, 5 figures, 4 tables, 24 reference

    Elastic constants of beta-eucryptite: A density functional theory study

    Full text link
    The five independent elastic constants of hexagonal β\beta-eucryptite have been determined using density functional theory (DFT) total energy calculations. The calculated values agree well, to within 15%, with the experimental data. Using the calculated elastic constants, the linear compressibility of β\beta-eucryptite parallel to the c-axis, χc\chi_c, and perpendicular to it, χa\chi_a, have been evaluated. These values are in close agreement to those obtained from experimentally known elastic constants, but are in contradiction to the direct measurements based on a three-terminal technique. The calculated compressibility parallel to the c-axis was found to positive as opposed to the negative value obtained by direct measurements. We have demonstrated that χc\chi_c must be positive and discussed the implications of a positive χc\chi_c in the context of explaining the negative bulk thermal expansion of β\beta-eucryptite.Comment: 3 eps figures, submitted for publicatio

    Ground state properties of heavy alkali halides

    Full text link
    We extend previous work on alkali halides by calculations for the heavy-atom species RbF, RbCl, LiBr, NaBr, KBr, RbBr, LiI, NaI, KI, and RbI. Relativistic effects are included by means of energy-consistent pseudopotentials, correlations are treated at the coupled-cluster level. A striking deficiency of the Hartree-Fock approach are lattice constants deviating by up to 7.5 % from experimental values which is reduced to a maximum error of 2.4 % by taking into account electron correlation. Besides, we provide ab-initio data for in-crystal polarizabilities and van der Waals coefficients.Comment: accepted by Phys. Rev.

    High-pressure crystal structure, lattice vibrations, and band structure of BiSbO4

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.inorgchem.6b00503”The high-pressure crystal structure, lattice-vibrations HP crystal structure, lattice vibrations, and band , and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressure on it. They also predict a possible high-pressure phase. A room-temperature pressure volume equation of state is determined, and the effect of pressure on the coordination polyhedron of Bi and Sb is discussed. Raman- and infrared-active phonons were measured and calculated. In particular, calculations provide assignments for all the vibrational modes as well as their pressure dependence. In addition, the band structure and electronic density of states under pressure were also calculated. The calculations combined with the optical measurements allow us to conclude that BiSbO4 is an indirect-gap semiconductor, with an electronic band gap of 2.9(1) eV. Finally, the isothermal compressibility tensor for. BiSbO4 is given at 1.8 GPa. The experimental (theoretical) data revealed that the direction of maximum compressibility is in the (0 1 0) plane at similar to 33 degrees (38 degrees) to the c-axis and 47 degrees (42 degrees) to the a-axis. The reliability of the reported results is supported by the consistency between experiments and calculations.Research supported by the Spanish government MINECO under Grant Nos. MAT2013-46649-C4-1/2/3-P and MAT2015-71070-REDC. We also acknowledge the computer time provided by MALTA cluster and the Red Espanola de Supercomputacion. Experiments were performed at MSPD beamline at ALBA Synchrotron Light Facility with the collaboration of ALBA staff.Errandonea, D.; Muñoz, A.; Rodríguez-Hernández, P.; Gomis, O.; Achary, SN.; Popescu, C.; Patwe, SJ.... (2016). High-pressure crystal structure, lattice vibrations, and band structure of BiSbO4. Inorganic Chemistry. 55(10):4958-4969. doi:10.1021/acs.inorgchem.6b00503S49584969551

    The constitutive tensor of linear elasticity: its decompositions, Cauchy relations, null Lagrangians, and wave propagation

    Full text link
    In linear anisotropic elasticity, the elastic properties of a medium are described by the fourth rank elasticity tensor C. The decomposition of C into a partially symmetric tensor M and a partially antisymmetric tensors N is often used in the literature. An alternative, less well-known decomposition, into the completely symmetric part S of C plus the reminder A, turns out to be irreducible under the 3-dimensional general linear group. We show that the SA-decomposition is unique, irreducible, and preserves the symmetries of the elasticity tensor. The MN-decomposition fails to have these desirable properties and is such inferior from a physical point of view. Various applications of the SA-decomposition are discussed: the Cauchy relations (vanishing of A), the non-existence of elastic null Lagrangians, the decomposition of the elastic energy and of the acoustic wave propagation. The acoustic or Christoffel tensor is split in a Cauchy and a non-Cauchy part. The Cauchy part governs the longitudinal wave propagation. We provide explicit examples of the effectiveness of the SA-decomposition. A complete class of anisotropic media is proposed that allows pure polarizations in arbitrary directions, similarly as in an isotropic medium.Comment: 1 figur

    Structural, Vibrational, and Electronic Study of α‑As2Te3 under Compression

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.jpcc.6b06049We report a study of the structural, vibrational, and electronic properties of layered monoclinic arsenic telluride (α-As2Te3) at high pressures. Powder X-ray diffraction and Raman scattering measurements up to 17 GPa have been complemented with ab initio total-energy, lattice dynamics, and electronic band structure calculations. Our measurements, which include previously unreported Raman scattering measurements for crystalline α-As2Te3, show that this compound undergoes a reversible phase transition above 14 GPa at room temperature. The monoclinic crystalline structure of α-As2Te3 and its behavior under compression are analyzed by means of the compressibility tensor. Major structural and vibrational changes are observed in the range between 2 and 4 GPa and can be ascribed to the strengthening of interlayer bonds. No evidence of any isostructural phase transition has been observed in α-As2Te3. A comparison with other group 15 sesquichalcogenides allows understanding the structure of α-As2Te3 and its behavior under compression based on the activity of the cation lone electron pair in these compounds. Finally, our electronic band structure calculations show that α-As2Te3 is a semiconductor at 1 atm, which undergoes a trivial semiconducting−metal transition above 4 GPa. The absence of a pressure-induced electronic topological transition in α-As2Te3 is discussed.This work has been performed under financial support from Projects MAT2013-46649-C4-2-P, MAT2013-46649-C4-3-P, MAT2015-71070-REDC, FIS2013-48286-C2-1-P, and FIS2013-48286-C2-2-P of the Spanish Ministry of Economy and Competitiveness (MINECO), and the Department of Education, Universities and Research of the Basque Government and UPV/EHU (Grant No. IT756-13). This publication is also fruit of "Programa de Valoracion y Recursos Conjuntos de I+D+i VLC/CAMPUS" and has been financed by the Spanish Ministerio de Educacion, Cultura y Deporte as part of "Programa Campus de Excelencia Internacional" through Projects SP20140701 and SP20140871. Finally, authors thank ALBA Light Source for beam allocation at beamline MSPD.Cuenca Gotor, VP.; Sans-Tresserras, JÁ.; Ibáñez, J.; Popescu, C.; Gomis, O.; Vilaplana Cerda, RI.; Manjón Herrera, FJ.... (2016). Structural, Vibrational, and Electronic Study of α‑As2Te3 under Compression. Journal of Physical Chemistry C. 120(34):19340-19352. https://doi.org/10.1021/acs.jpcc.6b06049S19340193521203
    corecore