1,083 research outputs found

    Non-exponential decay via tunneling in tight-binding lattices and the optical Zeno effect

    Full text link
    An exactly-solvable model for the decay of a metastable state coupled to a semi-infinite tight-binding lattice, showing large deviations from exponential decay in the strong coupling regime, is presented. An optical realization of the lattice model, based on discrete diffraction in a semi-infinite array of tunneling-coupled optical waveguides, is proposed to test non-exponential decay and for the observation of an optical analog of the quantum Zeno effect

    GABEK WinRelan® – a Qualitative Method for Crisis Research Engaging Crisis Management Personnel

    Get PDF
    Qualitative research methods like GABEK WinRelan are advantageous tools to analyze and thereby improve crisis management planning and communication systems by interrogating crisis management personnel. Contrary to quantitative methods they help to identify, explore, and structure new important aspects in this field and to formulate more specific research questions. This paper describes the usage and advantages of the qualitative method GABEK WinRelan within crisis management research, particularly within the e-Triage project which aims at the development of an electronic registration system of affected persons in mass casualty incidents. Furthermore it addresses different corresponding research fields like stress within emergency missions and the role GABEK WinRelan could play in examining these research fields

    Electrodynamics of Moving Media

    Get PDF
    Contains report on one research project.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 36-039-AMC-03200(E

    Generation and manipulation of squeezed states of light in optical networks for quantum communication and computation

    Get PDF
    We analyze a fiber-optic component which could find multiple uses in novel information-processing systems utilizing squeezed states of light. Our approach is based on the phenomenon of photon-number squeezing of soliton noise after the soliton has propagated through a nonlinear optical fiber. Applications of this component in optical networks for quantum computation and quantum cryptography are discussed.Comment: 12 pages, 2 figures; submitted to Journal of Optics

    Electrodynamics of Moving Media

    Get PDF
    Contains reports on one research project

    Electrodynamics of Moving Media

    Get PDF
    Contains research objectives and reports on one research project

    Decoherence of Quantum-Enhanced Timing Accuracy

    Get PDF
    Quantum enhancement of optical pulse timing accuracy is investigated in the Heisenberg picture. Effects of optical loss, group-velocity dispersion, and Kerr nonlinearity on the position and momentum of an optical pulse are studied via Heisenberg equations of motion. Using the developed formalism, the impact of decoherence by optical loss on the use of adiabatic soliton control for beating the timing standard quantum limit [Tsang, Phys. Rev. Lett. 97, 023902 (2006)] is analyzed theoretically and numerically. The analysis shows that an appreciable enhancement can be achieved using current technology, despite an increase in timing jitter mainly due to the Gordon-Haus effect. The decoherence effect of optical loss on the transmission of quantum-enhanced timing information is also studied, in order to identify situations in which the enhancement is able to survive.Comment: 12 pages, 4 figures, submitte

    Consistently Simulating a Wide Range of Atmospheric Scenarios for K2-18b with a Flexible Radiative Transfer Module

    Full text link
    The atmospheres of small, potentially rocky exoplanets are expected to cover a diverse range in composition and mass. Studying such objects therefore requires flexible and wide-ranging modeling capabilities. We present in this work the essential development steps that lead to our flexible radiative transfer module, REDFOX, and validate REDFOX for the Solar system planets Earth, Venus and Mars, as well as for steam atmospheres. REDFOX is a k-distribution model using the correlated-k approach with random overlap method for the calculation of opacities used in the δ\delta-two-stream approximation for radiative transfer. Opacity contributions from Rayleigh scattering, UV / visible cross sections and continua can be added selectively. With the improved capabilities of our new model, we calculate various atmospheric scenarios for K2-18b, a super-Earth / sub-Neptune with \sim8 M_\oplus orbiting in the temperate zone around an M-star, with recently observed H2_2O spectral features in the infrared. We model Earth-like, Venus-like, as well as H2_2-He primary atmospheres of different Solar metallicity and show resulting climates and spectral characteristics, compared to observed data. Our results suggest that K2-18b has an H2_2-He atmosphere with limited amounts of H2_2O and CH4_4. Results do not support the possibility of K2-18b having a water reservoir directly exposed to the atmosphere, which would reduce atmospheric scale heights, hence too the amplitudes of spectral features inconsistent with the observations. We also performed tests for H2_2-He atmospheres up to 50 times Solar metallicity, all compatible with the observations.Comment: 28 pages, 13 figures, accepted for publication in Ap

    Electrodynamics of Media

    Get PDF
    Contains research objectives and reports on one research project.Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 36-039-AMC-03200(E

    Radius of a Photon Beam with Orbital Angular Momentum

    Full text link
    We analyze the transverse structure of the Gouy phase shift in light beams carrying orbital angular momentum and show that the Gouy radius rGr_G characterizing the transverse structure grows as 2p++1\sqrt{2p+|\ell|+1} with the nodal number pp and photon angular momentum number \ell. The Gouy radius is shown to be closely related to the root-mean-square radius of the beam, and the divergence of the radius away from the focal plane is determined. Finally, we analyze the rotation of the Poynting vector in the context of the Gouy radius.Comment: 11 page
    corecore