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A. ENERGY CONSERVATION THEOREMI FOR THE PHONON MASER

1. Linearized Equations

The interaction of sound waves with optical-frequency waves in the presence of a

strong optical maser beam has been analyzed by Kroll. 1 Bobroff2 uses the following

linearized fluid equations:

SaaHV x E = -C0- (1)

V X H= E + (psE) (2)
at K at s

aP = -Vp + VE (3)
P t s s 2

ap1 s -V 7 (4)
K at s

The subscript 0 denotes time-average quantities; the velocity vs, mass density ps,

and pressure ps are small perturbations of the corresponding quantities away from equi-

librium; the constant y is the electrostrictive constant; and K is the bulk modulus of

the fluid. While these equations are adequate for describing the interaction of the elec-

tromagnetic and sound waves, they are approximate in two respects: (i) they have been

linearized with respect to the velocity v and density p of the material, and (ii) certain

terms that are small (in the ratio of sound speed to the speed of light, c) have been dis-

regarded.

2. General Nonrelativistic Equations

It is helpful to consider a more complete form of these equations when deriving con-

servation theorems because then the terms appearing in the theorem can be interpreted

physically more easily. In this report we shall consider equations that are exact except

for their lack of relativistic terms involving (i) the square of the material velocity
2 2 3

divided by c , and (ii) the ratio of electric energy density to pc . These equations are

Maxwell's equations

X aH (5)
Sx E = -_1A0 at-
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8E aP
VX H = E + + VX (PX ), (6)0 at at

where P is the polarization density in the fluid; the force equation

-t Pv + V pV= 7 =f-Vr + P VE + X (P V)h0H + +V( vP) X 0H, (7)

where f is the force density in the medium, and the equation of conservation of mass

- p + 7V pv = 0. (8)

Here no linearization assumptions have been made. The term Tr is the fluid pressure

caused by a combination of hydrodynamic and electrostrictive effects,

i = r(P, p)

= p -w + (E+vX 0 H) * P, (9)

where w, a function of p and P, is the energy density in the material because of hydro-

dynamic and polarization effects. The change in w that is due to a change in density and

polarization density is given by

/8w \  - _
6w =(p 6p + (E+VXi 0 H) • 8P

(_ w (E+v X oH) ) P. .
= + w- - 6p + (E+vX H) • 6P. (10)

By introducing the concept of an energy density, we have assumed that the medium is

conservative, with a constitutive law of the form

P = P(p, E+VX 40H). (11)

A useful alternative form for the force equation (7) can be derived by use of some

vector identities and (10) as follows:

V +-+- = - OH [ (vP- H . (12)

The other three equations then are

ap
V7 pi -at (13)

8H (14)VX E = -,,0 at (14)
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aE aP
V X (H-PX v) = E + (15)0 at at

This set of four equations (12-15) is ideally suited for derivation of power theorems

because on the left are spatial derivatives and on the right are time derivatives. Note

that these equations are exact, nonrelativistically, and have not been linearized.

3. Equivalence of the Two Sets of Equations

To prove that (1-4) are in fact approximate expressions obtained from (6-8), we con-

sider the linearized expression for the constitutive law.

P = 0 Xe (E+vX 0 H) + PE 0aeE. (16)

The source term on the right-hand side of (6), to first order in perturbed density and

velocity, becomes

aP + V × ( v) = (EOXeX)+ 8t EOoV X8t (XV) oxE)+ TPE +2 (CX fO) + V. E0 X (vE-Ev).

(17)

Whereas coupling of the acoustic system to the electromagnetic system requires reten-

tion of terms of first order in density and velocity, the coupling of the electromagnetic

system to the acoustic system takes place in zero order in p and V. The force density

(7) may then be written in the form

= -Vps +-VE OPo + (EOX E XOH). (18)

If we make the identification

ax
P a0  = Y

' (19)

and disregard the last two terms in (17) and third term in (18), we obtain the source

term of (2) and force coupling term of (3). The terms that have been disregarded are

usually of order cs/c (where c s is the speed of sound and c is the speed of light in the

medium under consideration) as compared with the terms that have been retained.

4. Conservation of Energy

The law of conservation of energy can be derived very easily from (12-15). Dot-

multiply (12) by pV, multiply (13) by the quantity that appears in parentheses on the
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left-hand side of (12), dot-multiply (14) by (H-P Xv), and dot-multiply (15) by -E. Then

add the four equations, to obtain

r p - 1 2 -1 2 1 2
S X Hv+v2 + v(w+r) - P(E 7) = -- pv2 +w E E + 0 H . (20)

Z 2

Here, we have evaluated aw/at by means of (10). This conservation equation is of a very

simple form. The terms under the divergence are the electromagnetic Poynting vector,

the kinetic power-flow density, the flow of enthalpy (as augmented by the electrostrictive

contributions toward the pressure), and the rate of work per unit area by the stress ten-

sor PE associated with the polarization of the material. On the right-hand side are the

time derivatives of several energy densities: the kinetic energy density, the energy

density w associated with the material, and the electric and magnetic energy densities.

5. Other Conservation Theorems

A class of solutions of (12)-(15) exists for which

X - p = 0. (21)

For these "irrotational" cases, a variety of other conservation theorems can be derived

from the basic equations, (12)-(15). Many such theorems for a similar physical system,

the relativistic electron beam, have been derived and discussed previously,4 and all der-

ivations are similar for the phonon-maser case, although the physical interpretation may

be different. Among the conservation principles that can be derived are small-signal

power theorems (both with arbitrary time dependence and sinusoidal time dependence),

Manley-Rowe relations, small-signal energy theorems, expressions for power and

energy in waves, several large-signal power theorems, and variational principles.

H. A. Haus, P. Penfield, Jr.
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