45 research outputs found

    Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010

    Get PDF
    This study presents a comprehensive assessment of the meteorological conditions and atmospheric flow dur- ing the Lagrangian-type “Hill Cap Cloud Thuringia 2010” experiment (HCCT-2010), which was performed in Septem- ber and October 2010 at Mt. SchmĂŒcke in the Thuringian Forest, Germany and which used observations at three measurement sites (upwind, in-cloud, and downwind) to study physical and chemical aerosol–cloud interactions. A Lagrangian-type hill cap cloud experiment requires not only suitable cloud conditions but also connected airflow condi- tions (i.e. representative air masses at the different measure- ment sites). The primary goal of the present study was to identify time periods during the 6-week duration of the ex- periment in which these conditions were fulfilled and there- fore which are suitable for use in further data examinations. The following topics were studied in detail: (i) the general synoptic weather situations, including the mesoscale flow conditions, (ii) local meteorological conditions and (iii) lo- cal flow conditions. The latter were investigated by means of statistical analyses using best-available quasi-inert trac- ers, SF6 tracer experiments in the experiment area, and re- gional modelling. This study represents the first applica- tion of comprehensive analyses using statistical measures such as the coefficient of divergence (COD) and the cross- correlation in the context of a Lagrangian-type hill cap cloud experiment. This comprehensive examination of local flow connectivity yielded a total of 14 full-cloud events (FCEs), which are defined as periods during which all connected flow and cloud criteria for a suitable Lagrangian-type ex- periment were fulfilled, and 15 non-cloud events (NCEs), which are defined as periods with connected flow but no cloud at the summit site, and which can be used as refer- ence cases. The overall evaluation of the identified FCEs provides the basis for subsequent investigations of the mea- sured chemical and physical data during HCCT-2010 (see http://www.atmos-chem-phys.net/special_issue287.html). Results obtained from the statistical flow analyses and regional-scale modelling performed in this study indicate the existence of a strong link between the three measurement sites during the FCEs and NCEs, particularly under condi- tions of constant southwesterly flow, high wind speeds and slightly stable stratification. COD analyses performed using continuous measurements of ozone and particle (49nm di- ameter size bin) concentrations at the three sites revealed, particularly for COD value

    Entwicklung eines Verfahrens zur Absorption von uebelriechenden Emissionen aus Landwirtschaft, kommunalen Entsorgungsbetrieben und Industrie Abschluss-Bericht

    No full text
    In cooperation with: Envi Tec Umweltsysteme GmbH und Co. KG, Greven (DE); Genesis Industrie-Service, Dissen a. T.W. (DE)Available from TIB Hannover: F03B26 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDeutsche Bundesstiftung Umwelt, Osnabrueck (Germany)DEGerman

    Atmos. Environ.

    No full text

    Atmos. Environ.

    No full text
    corecore