44 research outputs found

    Characteristics of lesser prairie-chicken (Tympanuchus pallidicinctus) long-distance movements across their distribution

    Get PDF
    Citation: Earl, J. E., Fuhlendorf, S. D., Haukos, D., Tanner, A. M., Elmore, D., & Carleton, S. A. (2016). Characteristics of lesser prairie-chicken (Tympanuchus pallidicinctus) long-distance movements across their distribution. Ecosphere, 7(8). doi:10.1002/(ISSN)2150-8925Long-distance movements are important adaptive behaviors that contribute to population, community, and ecosystem connectivity. However, researchers have a poor understanding of the characteristics of long-distance movements for most species. Here, we examined long-distance movements for the lesser prairie-chicken (Tympanuchus pallidicinctus), a species of conservation concern. We addressed the following questions: (1) At what distances could populations be connected? (2) What are the characteristics and probability of dispersal movements? (3) Do lesser prairie-chickens display exploratory and round-trip movements? (4) Do the characteristics of long-distance movements vary by site? Movements were examined from populations using satellite GPS transmitters across the entire distribution of the species in New Mexico, Oklahoma, Kansas, and Colorado. Dispersal movements were recorded up to 71 km net displacement, much farther than hitherto recorded. These distances suggest that there may be greater potential connectivity among populations than previously thought. Dispersal movements were displayed primarily by females and had a northerly directional bias. Dispersal probabilities ranged from 0.08 to 0.43 movements per year for both sexes combined, although these movements averaged only 16 km net displacement. Lesser prairie-chickens displayed both exploratory foray loops and round-trip movements. Half of round-trip movements appeared seasonal, suggesting a partial migration in some populations. None of the long-distance movements varied by study site. Data presented here will be important in parameterizing models assessing population viability and informing conservation planning, although further work is needed to identify landscape features that may reduce connectivity among populations. © 2016 Earl et al

    Factors affecting female space use in ten populations of prairie chickens

    Get PDF
    Citation: Winder, V. L., Carrlson, K. M., Gregory, A. J., Hagen, C. A., Haukos, D. A., Kesler, D. C., . . . Sandercock, B. K. (2015). Factors affecting female space use in ten populations of prairie chickens. Ecosphere, 6(9), 17. doi:10.1890/es14-00536.1Conservation of wildlife depends on an understanding of the interactions between animal movements and key landscape factors. Habitat requirements of wide-ranging species often vary spatially, but quantitative assessment of variation among replicated studies at multiple sites is rare. We investigated patterns of space use for 10 populations of two closely related species of prairie grouse: Greater Prairie-Chickens (Tympanuchus cupido) and Lesser Prairie-Chickens (T. pallidicinctus). Prairie chickens require large, intact tracts of native grasslands, and are umbrella species for conservation of prairie ecosystems in North America. We used resource utilization functions to investigate space use by female prairie chickens during the 6-month breeding season from March through August in relation to lek sites, habitat conditions, and anthropogenic development. Our analysis included data from 382 radio-marked individuals across a major portion of the extant range. Our project is a unique opportunity to study comparative space use of prairie chickens, and we employed standardized methods that facilitated direct comparisons across an ecological gradient of study sites. Median home range size of females varied similar to 10-fold across 10 sites (3.6-36.7 km(2)), and home ranges tended to be larger at sites with higher annual precipitation. Proximity to lek sites was a strong and consistent predictor of space use for female prairie chickens at all 10 sites. The relative importance of other predictors of space use varied among sites, indicating that generalized habitat management guidelines may not be appropriate for these two species. Prairie chickens actively selected for prairie habitats, even at sites where similar to 90% of the land cover within the study area was prairie. A majority of the females monitored in our study (>95%) had activity centers within 5 km of leks, suggesting that conservation efforts can be effectively concentrated near active lek sites. Our data on female space use suggest that lek surveys of male prairie chickens can indirectly assess habitat suitability for females during the breeding season. Lek monitoring and surveys for new leks provide information on population trends, but can also guide management actions aimed at improving nesting and brood-rearing habitats

    Spatiotemporal scaling of North American continental interior wetlands: implications for shorebird conservation

    Get PDF
    Within interior North America, erratic weather patterns and heterogeneous wetland complexes cause wide spatio-temporal variation in the resources available to migrating shorebirds. Identifying the pattern-generating components of landscape-level resources and the scales at which shorebirds respond to these patterns will better facilitate conservation efforts for these species. We constructed descriptive models that identified weather variables associated with creating the spatio-temporal patterns of shorebird habitat in ten landscapes in north-central Oklahoma. We developed a metric capable of measuring the dynamic composition and configuration of shorebird habitat in the region and used field data to empirically estimate the spatial scale at which shorebirds respond to the amount and configuration of habitat. Precipitation, temperature, solar radiation and wind speed best explained the incidence of wetland habitat, but relationships varied among wetland types. Shorebird occurrence patterns were best explained by habitat density estimates at a 1.5 km scale. This model correctly classified 86 % of shorebird observations. At this scale, when habitat density was low, shorebirds occurred in 5 % of surveyed habitat patches but occurrence reached 60 % when habitat density was high. Our results suggest scale dependence in the habitat-use patterns of migratory shorebirds. We discuss potential implications of our results and how integrating this information into conservation efforts may improve conservation strategies and management practices

    NORTHERN HARRIER CIRCUS-CYANEUS PREDATION OF LESSER PRAIRIE-CHICKEN TYMPANUCHUS-PALLIDICINCTUS

    No full text
    Volume: 23Start Page: 182End Page: 18

    Multiscale Habitat Selection by Long-Billed Curlews (Numenius americanus) Breeding in the United States

    No full text
    Long-billed Curlew (Numenius americanus) populations have declined during the past 150 years in part due to destruction and fragmentation of grasslands used during the breeding season. Here, multiscale habitat characteristics best predicting number of Long-billed Curlews, detected during range-wide surveys conducted throughout the United States in 2004 and 2005 were determined. Long-billed Curlews were most often observed in habitats classified primarily as grassland habitat and secondarily as shortgrass or pasture/rangeland, all with low vegetation heights (i.e. 4–15 cm). Numbers of Long-billed Curlews were positively associated with wetland habitats on a local scale and hay/pasture areas on a landscape scale, but negatively associated with shrub/scrub on local and landscape scales and evergreen forests on a landscape scale. The study confirmed the importance of grassland, cropland, pasture and wetland habitats for breeding Long-billed Curlews across its geographic range in the United States. These results reinforce the need to conserve, manage, or create contiguous tracts of grasslands containing emergent wetlands for Long-billed Curlews throughout the breeding season and their range in the United States
    corecore