50 research outputs found
Flood fragility analysis for bridges with multiple failure modes
Bridges are one of the most important infrastructure systems that provide public and economic bases for humankind. It is also widely known that bridges are exposed to a variety of flood-related risk factors such as bridge scour, structural deterioration, and debris accumulation, which can cause structural damage and even failure of bridges through a variety of failure modes. However, flood fragility has not received as much attention as seismic fragility despite the significant amount of damage and costs resulting from flood hazards. There have been few research efforts to estimate the flood fragility of bridges considering various flood-related factors and the corresponding failure modes. Therefore, this study proposes a new approach for bridge flood fragility analysis. To obtain accurate flood fragility estimates, reliability analysis is performed in conjunction with finite element analysis, which can sophisticatedly simulate the structural response of a bridge under a flood by accounting for flood-related risk factors. The proposed approach is applied to a numerical example of an actual bridge in Korea. Flood fragility curves accounting for multiple failure modes, including lack of pier ductility or pile ductility, pier rebar rupture, pile rupture, and deck loss, are derived and presented in this study.ope
NMR-Based Prostate Cancer Metabolomics
Author's accepted version (postprint).This is an Accepted Manuscript of an article published by Springer in Methods in Molecular Biology on 22 May 2018.Available online: https://doi.org/10.1007/978-1-4939-7845-8_14acceptedVersio
UCP1 Induction during Recruitment of Brown Adipocytes in White Adipose Tissue Is Dependent on Cyclooxygenase Activity
Background The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced thermogenesis. Methodology/Principal Findings Here we report that cyclooxygenase (COX) activity and prostaglandin E2 (PGE2) are crucially involved in induction of UCP1 expression in inguinal white adipocytes, but not in classic interscapular brown adipocytes. Cold-induced expression of UCP1 in inguinal white adipocytes was repressed in COX2 knockout (KO) mice and by administration of the COX inhibitor indomethacin in wild-type mice. Indomethacin repressed β-adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE2 receptor antagonists implicated EP4 as a main PGE2 receptor, and injection of the stable PGE2 analog (EP3/4 agonist) 16,16 dm PGE2 induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. Conclusions/Significance Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity development
DIRECT PROBABILITY-BASED SEISMIC DESIGN OF RC BUILDINGS
A method is proposed for designing RC structures that satisfy prescribed requirements in terms of frequency of exceedance of a number of performance levels. The method assumes the period and base shear ratio as the two most relevant (global) design variables. It makes use of pushover analysis to evaluate an approximate median IDA curve employed for evaluation of the mean annual frequency of exceedance of the performance levels, according to the closed-form expression by Cornell and co-workers (Cornell et al. 2002). Two examples illustrate the application of the method, its current limitations and perspectives