199 research outputs found

    Placental Structure in Type 1 Diabetes: Relation to Fetal Insulin, Leptin, and IGF-I

    Get PDF
    OBJECTIVE-Alteration of placental structure may influence fetal overgrowth and complications of maternal diabetes. We examined the placenta in a cohort of offspring of mothers with type I diabetes (OT1DM) to assess structural changes and determine whether these were related to maternal A1C, fetal hematocrit, fetal hormonal, or metabolic axes. RESEARCH DESIGN AND METHODS-Placental samples were analyzed using stereological techniques to quantify volumes and surface areas of key placental components in 88 OT1DM and 39 control subjects, and results related to maternal A1C and umbilical cord analytes (insulin, leptin, adiponectin, IGF-I, hematocrit, lipids, C-reactive protein, and interleukin-6). RESULTS-Intervillous space volume was increased in OT1DM (OT1DM 250 +/- 81 cm(3) VS. control 217 +/- 65 cm(3); P = 0.02) with anisomorphic growth of villi (P = 0.025). The placentas showed a trend to increased weight (OT1DM 690 +/- 19 g; control 641 +/- 22 g; P = 0.08), but villous, nonparenchymal, trophoblast, and capillary volumes did not differ. Villous surface area, capillary surface area, membrane thickness, and calculated morphometric diffusing capacity were also similar in type 1 diabetic and control subjects. A1C at 26-34 weeks associated with birth weight (r = 0.27, P = 0.03), placental weight (r = 0.41, P = 0.0009), and intervillous space volume (r = 0.38, P = 0.0024). In multivariate analysis of cord parameters in OT1DM, fetal IGF-I emerged as a significant correlate of most components (intervillous space, villous, trophoblast, and capillary volumes, all P < 0.01). By contrast, fetal insulin was only independently associated with capillary surface area (positive, r(2) = 6.7%; P = 0.02). CONCLUSIONS-There are minimal placental structural differences between OT1DM and control subjects. Fetal IGF-I but not fetal insulin emerges as a key correlate of placental substructural volumes, thereby facilitating feedback to the placenta regarding fetal metabolic deman

    Differential associations of leptin with adiposity across early childhood

    Get PDF
    Objective: We examined associations of perinatal and 3-year leptin with weight gain and adiposity through 7 years. Design and Methods In Project Viva, we assessed plasma leptin from mothers at 26–28 weeks’ gestation (n=893), umbilical cord vein at delivery (n=540), and children at 3 years (n=510) in relation to body mass index (BMI) z-score, waist circumference, skinfold thicknesses, and dual X-ray absorptiometry body fat. Results: 50.1% of children were male and 29.5% non-white. Mean(SD) maternal, cord, and age 3 leptin concentrations were 22.9(14.2), 8.8(6.4), and 1.8(1.7) ng/mL, respectively, and 3- and 7-year BMI z-scores were 0.46(1.00) and 0.35(0.97), respectively. After adjusting for parental and child characteristics, higher maternal and cord leptin was associated with less 3- year adiposity. For example, mean 3-year BMI z-score was 0.5 lower (95%CI:−0.7,−0.2; p-trend=0.003) among children whose mothers’ leptin concentrations were in the top vs. bottom quintile. In contrast, higher age 3 leptin was associated with greater weight gain and adiposity through age 7 [e.g., change in BMI z-score from 3 to 7 years was 0.2 units (95%CI:−0.0,0.4; p-trend=0.05)]. Conclusions: Higher perinatal leptin was associated with lower 3-year adiposity, whereas higher age 3 leptin was associated with greater weight gain and adiposity by 7 years

    Lipotoxicity in obese pregnancy and its potential role in adverse pregnancy outcome and obesity in the offspring

    Get PDF
    Increasing maternal obesity is a challenge that has an impact on all aspects of female reproduction. Lean and obese pregnant women gain similar fat mass, but lean women store fat in the lower-body compartment and obese women in central compartments. In the non-pregnant, central storage of fat is associated with adipocyte hypertrophy and represents a failure to adequately store excess fatty acids, resulting in metabolic dysregulation and ectopic fat accumulation (lipotoxicity). Obese pregnancy is associated with exaggerated metabolic adaptation, endothelial dysfunction and increased risk of adverse pregnancy outcome. We hypothesize that the preferential storage of fat in central rather than ‘safer’ lower-body depots in obese pregnancy leads to lipotoxicity. The combination of excess fatty acids and oxidative stress leads to the production of oxidized lipids, which can be cytotoxic and influence gene expression by acting as ligands for nuclear receptors. Lipid excess and oxidative stress provoke endothelial dysfunction. Oxidized lipids can inhibit trophoblast invasion and influence placental development, lipid metabolism and transport and can also affect fetal developmental pathways. As lipotoxicity has the capability of influencing both maternal endothelial function and placental function, it may link maternal obesity and placentally related adverse pregnancy outcomes such as miscarriage and pre-eclampsia. The combination of excess/altered lipid nutrient supply, suboptimal in utero metabolic environment and alterations in placental gene expression, inflammation and metabolism may also induce obesity in the offspring

    Cord blood adipokines and lipids and adolescent nonalcoholic fatty liver disease

    Get PDF
    © 2016 by the Endocrine Society. Context: Maternal adiposity in pregnancy is associated with offspring adiposity and metabolic dysfunction postnatally, including greater risk of nonalcoholic fatty liver disease (NAFLD). Recent genetic analyses suggest a causal effect of greater maternal body mass index on offspring birth weightandponderal index, but the relative roles of the environment in utero or later in life remains unclear. Objective: We sought to determine whether markers of infant adiposity (birth weight, umbilical cord blood leptin, adiponectin, and lipids) were associated with markers of NAFLD in adolescence. Design, Setting, and Participants: This was aUK prospective birth cohort with 17 years of follow-up with liver function tests (aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase) (n = 1037 participants), and ultrasound scan assessed liver fat, volume, and sheer velocity at age 17 (n = 541 participants). Missing covariate data were imputed. Main Outcomes: Ultrasound and biochemical measures of NAFLD were measured. Results: Birth weight, cord blood leptin, and adiponectin were not associated with a diagnosis of NAFLD. In adjusted analyses, 2 of 42 associations attained conventional 5% levels of significance. Birth weight was positively associated with liver volume (1.0% greater per 100 g [95% confidence interval 0.5%-2.0%]). Cord high-density lipoprotein-cholesterol was positively associated with alanine aminotransferase (11.6% higher per 1 mmol/L [95% confidence interval 0.3, 23.4]); however, this association was primarily mediated via offspring adiposity. Conclusions: In this extensive analysis, we found little evidence measurements of infant fat mass and birth size were related to adolescent markers of NAFLD. The association between birth weight and adolescent liver volume may indicate the contribution of greater organ size to birth weight and tracking of organ size
    corecore