27 research outputs found

    Ideal quantum gases in two dimensions

    Full text link
    Thermodynamic properties of non-relativistic bosons and fermions in two spatial dimensions and without interactions are derived. All the virial coefficients are the same except for the second, for which the signs are opposite. This results in the same specific heat for the two gases. Existing equations of state for the free anyon gas are also discussed and shown to break down at low temperatures or high densities.Comment: 17 page

    Thermodynamics of a weakly interacting Bose-Einstein gas

    Full text link
    The one-loop effective potential for non-relativistic bosons with a delta function repulsive potential is calculated for a given chemical potential using functional methods. After renormalization and at zero temperature it reproduces the standard ground state energy and pressureas function of the particle density. At finite temperatures it is found necessary to include ring corrections to the one-loop result in order to satisfy the Goldstone theorem. It is natural to introduce an effective chemical potential directly related to the order parameter and which uniformly decreases with increasing temperatures. This is in contrast to the the ordinary chemical potential which peaks at the critical temperature. The resulting thermodynamics in the condensed phase at very low temperatures is found to be the same as in the Bogoliubov approximation where the degrees of freedom are given by the Goldstone bosons. At higher temperatures the ring corrections dominate and result in a critical temperature unaffected by the interaction.Comment: 39 pages, 9 figures, picTex, submitted to Annals of Physics. Discussions on renormalization and off-diagonal self energies are made clearer in this version. A short derivation of the non-relativistic limit is adde

    Localizing fields on brane in magnetized backgound

    Full text link
    To localize the scalar, fermion, and abelian gauge fields on our 3-brane, a simple mechanism with a hypothetical "magnetic field" in the bulk is proposed. This mechanism is to treat all fields in the equal footing without ad hoc consideration. In addition, the machanism can be easily realized in a flat dimension six Minkowski space and it works even in the weak coupling limit

    Nonergodic Behavior of Interacting Bosons in Harmonic Traps

    Full text link
    We study the time evolution of a system of interacting bosons in a harmonic trap. In the low-energy regime, the quantum system is not ergodic and displays rather large fluctuations of the ground state occupation number. In the high energy regime of classical physics we find nonergodic behavior for modest numbers of trapped particles. We give two conditions that assure the ergodic behavior of the quantum system even below the condensation temperature.Comment: 11 pages, 3 PS-figures, uses psfig.st

    Semiclassical Corrections to a Static Bose-Einstein Condensate at Zero Temperature

    Full text link
    In the mean-field approximation, a trapped Bose-Einstein condensate at zero temperature is described by the Gross-Pitaevskii equation for the condensate, or equivalently, by the hydrodynamic equations for the number density and the current density. These equations receive corrections from quantum field fluctuations around the mean field. We calculate the semiclassical corrections to these equations for a general time-independent state of the condensate, extending previous work to include vortex states as well as the ground state. In the Thomas-Fermi limit, the semiclassical corrections can be taken into account by adding a local correction term to the Gross-Pitaevskii equation. At second order in the Thomas-Fermi expansion, the semiclassical corrections can be taken into account by adding local correction terms to the hydrodynamic equations

    Exclusion Statistics in a trapped two-dimensional Bose gas

    Full text link
    We study the statistical mechanics of a two-dimensional gas with a repulsive delta function interaction, using a mean field approximation. By a direct counting of states we establish that this model obeys exclusion statistics and is equivalent to an ideal exclusion statistics gas.Comment: 3 pages; minor changes in notation; typos correcte

    Stability of the homogeneous Bose-Einstein condensate at large gas parameter

    Full text link
    The properties of the uniform Bose gas is studied within the optimized variational perturbation theory (Gaussian approximation) in a self-consistent way. It is shown that the atomic BEC with a repulsive interaction becomes unstable when the gas parameter gamma=rho a^3 exceeds a critical value gamma_{crit} ~ 0.01. The quantum corrections beyond the Bogoliubov-Popov approximation to the energy density, chemical potential and pressure in powers of gamma expansions are presented.Comment: 9 pages, 3 figures, Revte

    Bose-Einstein condensation in a one-dimensional interacting system due to power-law trapping potentials

    Get PDF
    We examine the possibility of Bose-Einstein condensation in one-dimensional interacting Bose gas subjected to confining potentials of the form Vext(x)=V0(∣x∣/a)γV_{\rm ext}(x)=V_0(|x|/a)^\gamma, in which γ<2\gamma < 2, by solving the Gross-Pitaevskii equation within the semi-classical two-fluid model. The condensate fraction, chemical potential, ground state energy, and specific heat of the system are calculated for various values of interaction strengths. Our results show that a significant fraction of the particles is in the lowest energy state for finite number of particles at low temperature indicating a phase transition for weakly interacting systems.Comment: LaTeX, 6 pages, 8 figures, uses grafik.sty (included), to be published in Phys. Rev.

    Bose-Einstein condensation in arbitrarily shaped cavities

    Full text link
    We discuss the phenomenon of Bose-Einstein condensation of an ideal non-relativistic Bose gas in an arbitrarily shaped cavity. The influence of the finite extension of the cavity on all thermodynamical quantities, especially on the critical temperature of the system, is considered. We use two main methods which are shown to be equivalent. The first deals with the partition function as a sum over energy levels and uses a Mellin-Barnes integral representation to extract an asymptotic formula. The second method converts the sum over the energy levels to an integral with a suitable density of states factor obtained from spectral analysis. The application to some simple cavities is discussed.Comment: 10 pages, LaTeX, to appear in Physical Review
    corecore