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Bose-Einstein condensation in a one-dimensional interacting system
due to power-law trapping potentials
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We examine the possibility of Bose-Einstein condensation in one-dimensional interacting Bose gas sub-
jected to confining potentials of the foru,(x)=V,(|x|/a)?, in which y<2, by solving the Gross-Pitaevskii
equation within the semiclassical two-fluid model. The condensate fraction, chemical potential, ground state
energy, and specific heat of the system are calculated for various values of interaction strengths. Our results
show that a significant fraction of the particles is in the lowest energy state for a finite number of particles at
low temperature, indicating a phase transition for weakly interacting sysf&h850-29479)00902-6

PACS numbg(s): 03.75.Fi, 05.30.Jp, 67.40.Kh, 64.640.

[. INTRODUCTION particles, we employ the mean-field the¢2p,21] as applied
to a two-fluid model. Such an approach has been shown to
The recent observations of Bose-Einstein condensatiopapture the essential physics in 3D systd@$]. The 2D

VexdX)=Vq

2y/(2+7)

@

kF(y)G(y)

) Uy+1/2

(BEO) in trapped atomic gasd4—5] have renewed interest Vversion[22] is also in qualitative agreement with the results

in bosonic system§s,7]. BEC is characterized by a macro- of PIMC simulations on hard-core bosof3]. In the re-

scopic occupation of the ground state < T,, whereT, ~ Maining sections we outlme the two-fluid m_odel and present

depends on the system parameters. The success of expetHr results for an interacting 1D Bose gas in power-law po-

mental manipulation of externally applied trap potentialstentials.

brings about the possibility of examining two- or even one-

dimensional Bose-Einstein condensates. Since the transition IIl. THEORY

temperaturel increases with decreasing system dimension, | this paper we shall investigate the Bose-Einstein con-

it was suggested that BEC may be achieved more favorabljensation phenomenon for 1D interacting Bose gas confined

in low-dimensional systemg8]. The possibility of BEC in i a power-law potential:

one- (1D) and two-dimensional2D) homogeneous Bose

gases is ruled out by the Hohenberg theof&i However, x|\

due to spatially varying potentials which break the transla- al’ @)

tional invariance, BEC can occur in low-dimensional inho-

mogeneous systems. The existence of BEC is shown in a 1DhereV, anda are some suitable energy and length param-

noninteracting Bose gas in the presence of a gravitationditers defining the external potential, apaontrols the con-

field [10], an attractives impurity [11], and power-law trap- ~ finement strength. Presumably, they can be experimentally

ping potentiald12]. Recently, many authors have discusseda_(jJUSted- Using the sem|cIaSS|ch density of states, th_e tran-

the possibility of BEC in 1D trapped Bose gases relevant tgition temperaturQ'O and Fhe fraction of condensed particles

the magnetically trapped ultracold alkali-metal atofa§—  No/N for the noninteracting system were calculated ¥4

18]. Pearson and his co-workdr9] studied the interacting

Bose gas in 1D power-law potentials employing the path- kgTo=

integral Monte CarldPIMC) method. They have found that

a macroscopically large number of atoms occupy the lowest

single-particle state in a finite system of hard-core bosons eﬁnd

some critical temperature. It is important to note that the

recent BEC experiments are carried out with a finite number No/N=1— (— , (3)

of atoms(ranging from several thousands to severat)10 To

}2:{33;?;2&;??on;gdr):gta;g;&T:;%%_umem In some theoretY'/vheref<=,2(2m) Y23/ yhV3” (m is the mass of bosons ahd
The aim of this paper is to study the two-body interaction'> Planck’s constaptand

effects on the BEC in 1D systems under power-law trap po- 1 xUr-1gy

tentials. For ideal bosons in harmonic oscillator traps transi- F(y)_f A (4)

tion to a condensed state is prohibited. It is anticipated that

external potentials more confining than the harmonic oscilla-

tor type would be possible experimentally. It was also argue@nd

[15] that in the thermodynamic limit there can be no BEC BTN

phase transition for nonideal bosons in 1D. Since the realistic G(y)_f

systems are weakly interacting and contain a finite number of

—T(Uy+ 12 (1Uy+1/2), (5
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0.6 y y y and the total number of particlé$ fixes the chemical poten-
tial through the relation
p(E)dE
- =Ng+ ,
Z 04 N=No f exd (E—u)/kgT]—1 (10
=
=
3 whereNy= [¥2(x)dx is the number of condensed particles,
3 and the semiclassical density of states is determined by
= 02
< ()= 2" & 1
P = a—
h Jvero<e VE—Ver(X)
0.0 . . . The GP equation yields a simple solution when the kinetic
0.0 0.5 10 15 20 energy term is neglectgthe Thomas-Fermi approximatign
Y
FIG. 1. The variation of the critical temperatuiig with the P2(x)= P~ Ve X) = 29M () O o= Ver(X) —2gn1(X)],
external potential exponent g 12

in which I'(x) and {(x) are the gamma and the Riemann

zeta functions, respectively. The total energy of the noninterWhere 6[x] is the unit step function. More precisely, the
acting system foT<T, (x=0) is given by Thomas-Fermi approximatidi7,20,3d would be valid when

the interaction energy-gNgy/A far exceeds the kinetic en-
(E)  T(Uy+312){(1y+3/2) | T |Yr+32 ergy 7i2/2mA2, whereA is the spatial extent of the conden-
NKeT,  T(Uy+ 121y + 172 (T_o) (6)  sate cloud. For a linear trap potentiak., y=1), a varia-
tional estimate for A is  given by A
Figure 1 shows the variation of the critical temperafligeas = L712/2m(m/2)*?2a/V,]". We note that the Thomas-Fermi
a function of the exponeny in the trapping potential. It approximation would break down for temperatures close to
should be noted thak, vanishes for harmonic potential due To WhereNy is expected to become very small.
to the divergence of the functioB(y=2). It appears that  The above set of equatiof&qgs.(9)—(12)] must be solved
the maximumT, is attained fory~0.5, and for a constant Self-consistently to obtain the various physical quantities
trap potentiali.e., Vey(X) = V,] the BEC disappears, consis- Such as the chemical potentja(N,T), the condensate frac-
tent with the Hohenberg theorem. tion Ng/N, and the effective potentidl¢. In a 3D system,
We are interested in how the short-range interaction efMinguzzi et al. [21] solved a similar system of equations
fects modify the picture presented above. To this end, wé&umerically and also introduced an approximate semianalyti-
employ the mean-field formalism and describe the collectivecal solution by treating the interaction effects perturbatively.
dynamics of a Bose condensate by its macroscopic timeMotivated by the succesg21,22 of the perturbative ap-
dependent wave functio¥ (x,t) =W (x)exp(—iut), wheren ~ Proach we consider a weakly interacting system in 1D. To
is the chemical potential. The condensate wave functiofero order ingny(r), the effective potential becomes
VT (x) satisfies the Gross-Pitaevsk@&P) equation[24,25
Vexd(X) if u<Vex(X)

2 42 Ve X) = . (13
—f—m%+vext<x>+29nl<x>+gw2<x> W (x)=pW¥(x), T2 Ved) i > Ved ).

(7 Figure 2 displays the typical form of the effective potential

) ) i ) within our semianalytic approximation scheme. The most
whereg is the repulsive, short-range interaction strength, and,oteworthy aspect is that the effective potential that affects
nl(x) is the average nonc_ondensed particle distribution fl_Jncthe bosons acquires a double-well shape because of the in-
tion. We treat the interaction strengghas a phenomenologi- teractions. We can explain this result by a simple argument.
cal parameter without going into the details of actually relat- gt the number of particles in the left and right wells Mg
ing it to any microscopic description26]. In the N respectively, so thai=N, +Ng. The nonlinear or
semiclassical two-fluid mod¢27,28 the noncondensed par- jnteraction term in the GP equation may be approximately
ticles can be treated as bosons in an effective pment"%garded a&=N2+N2. Therefore the problem reduces to

(21,29 the minimization of the interaction potentid, which is
achieved foN_ =Ng.

_ 2
Vert(X) = Ve X) +2g My (x) +2g¥*(x). ®) The number of condensed atoms is calculated to be

The density distribution function is given by 5
_ ya Uy+1
= [ 5 ! REETI L o
1(X)=

27h exp{[p%/2m+Veu(X) — u]/kg T — 1"
(9)  The density of states is given by
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FIG. 2. Effective potentiaV/u(X) in the presence of interaction FIG. 3. The condensate fractioi, /N versus temperaturé/T,

[Xo=(u/Vo)Y7a]. Thick dotted line represents the lower part of the for N=10° and for various interaction strengths
external potentiaV/ g, (X).

o0 Xl/7+1/2dx
H(y,m,E)2u—E)Y 12 if u<E<2u J(y,M,T):f i
p(E)=x Uy—112 : 2ulkgT  Z€—1
F(y)E™ if E>2u,
(15 N szkBTH( ) (2ulkgT —x) Y7+ Y2gx
y Uy X
wikgT el ze—1

where

and(E). is the energy of the particles in the condensate,
El2u-E) X7~ 1dx

(v,u,E) . — 2,2+ 1y

2ay
(1+9)(2y+1)gVy"”

(B)e=3 [ wioodx- (19

Using the above density of states, conservation of total num-
ber of particles gives us a transcendental equation for th&he kinetic energy of the condensed particles is neglected

chemical potential within our Thomas-Fermi approximation to the GP equation.
_ 1Uy+1/2
N=No+ (kgT) 1y ), (16) Ill. RESULTS AND DISCUSSION
where Up to now we have based our formulation on arbitrary
but in the rest of this work we shall present our results for
B o xMr=lzgy y=1. Our calculations show that the results for other values
(y e, T)=F(y) oulkgT 26— 1 of y are qualitatively similar. In Figs. 3 and 4 we calculate
8 the condensate fraction as a function of temperature for vari-
2ulkgT ous values of the interaction stren /Vpa (at constant
= [ ke o ofVoa (
%
wieT 1.0 -
CulkgT—0Y Ydx b TN [ s
X -=-= N=10°

zet—1 ’ 0.8 |

in which z=e~#/k8T. The chemical potentigk(N,T) is de-
termined from the solution of Eq16). Finally, the total 06

energy of the interacting system can be written as Eo
Z.
04 |
(E)=[(E}nd N—=Ng)/2+(E)]/N, 17
where(E),. is the energy of the noncondensed particles 02 |
Ep(E)dE
<E>nc:f _ — 0.0 ‘ ; ; ’ -
exg (E—u)/kgT]—1 0.0 0.2 0.4 0.6 0.8 1.0
T/T
= k(kg )" Y2y, 1, T), (18) ’

FIG. 4. The condensed fractidw, /N versus temperaturé/T,
where for »=0.001 and for different numbers of particlis
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FIG. 5. The temperature dependence of the chemical potential FIG. 7. The temperature dependence of the total energy of 1D
w(N,T) for various interaction strengths and fde=10° particles.  Bose gas for various interaction strengthsand the Maxwell-
Boltzmann distribution foN= 10" particles.

N=10°) and different numbers of particle@t constant? 1o a condensed state is approached. Although it is conceiv-
=0.001), respectively. We observe that as the interactioRple to imagine the full solution of the mean-field equations
strength# is increased, the depletion of the condensate befEqs.(9)—(12)] may remedy the situation for larger values of
comes more appreciablgig. 3). As shown in the corre- 4, the PIMC simulation$19] also seem to indicate that the
sponding figures, a significant fraction of the particles occucondensation is inhibited for strongly interacting systems.
pies the ground state of the system T6£T,. The results for the specific heat calculated from the total
The temperature dependence of the chemical potential isnergy curves, i.e.Cy,=d(E)/dT, are depicted in Fig. 8.
plotted in Figs. 5 and 6 for various interaction strendttt\-  The sharp peak at =T, tends to be smoothed out with
stantN=10°) and different numbers of particlgsonstant increasing interaction strength. It is known that the effects of
7=0.001), respectively. Effects of interactions gugN,T) @ finite number of particles are also responsible for such

are seen as large deviations from the noninteracting behavid€havior{20]. In our treatment these two effects are not dis-
for T<T,. entangled. It was pointed out by Ingold and Lambredf{

In Fig. 7 we show the ground state energy of an interactthat the identification of the BEC should also be based on the
ing 1D system of bosons as a function of temperature fopehavior ofCy, aroundT~T,. Our calculations indicate that

different interaction strengths. For small andT<T,, (E)  N€ Ee.alt( strt:pture t?‘CV remalnsle(\j/etn n th? é)retsher;ce tOf
is similar to that in a noninteracting system. Asncreases, weak Interactions, thus we are led fo conclude that a true

some differences start to become noticeable, anchferl transition to a Bose-Einstein condensed state is predicted

we observe a small bump developing(i). This may indi- within the present approach.

cate the breakdown of our approximate scheme for large IV. CONCLUDING REMARKS

enough interaction strengths, as we can find no fundamental _ _ _ _ _
reason for such behavior. It is also possible that the Thomas- In this work we have applied the mean-field, semiclassical
Fermi approximation employed is violated as the transitiofwo-fluid model to interacting bosons in 1D power-law trap
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FIG. 8. The temperature dependence of the specific Ggdor
FIG. 6. The temperature dependence of the chemical potentialarious interaction strengthg and the Maxwell-Boltzmann distri-
(N, T) for different numbers of particled and for »=0.001. bution for N=10° particles.
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potentials. We have found that for a range of interactionsibility in the present case, since the effective potential in our
strengths the behavior of the thermodynamic quantities redescription is of the form of a double-well potentiaf. Fig.
sembles that of noninteracting bosons. Thus BEC in the). In our treatment, the interaction effects modify the single-
sense of macroscopic occupation of the ground state occuigell trap potential into one which exhibits two minima. Thus
when the short-range interparticle interactions are not togf we think of this effective potential as the one affecting the
strong. Our results are in qualitative agreement with the recondensed bosons and according to the general arguments
cent PIMC simulation$19] of similar systems. Both 2D and [31-34 based on two weakly connected systems we should
1D simulation result$19,23 indicate a phase transition for a have an Osci”ating flux of partic|es when the chemical po-
finite number system, in contrast to the situation in the thertential in the two wells is different. Any configuration with
modynamic limit. Since systems of much larger size can bey, N, which is always the case for an odd number of
studied within the present approach, our work complementgosons, will result in an oscillatory motion. It would be in-

the PIMC calculations. teresting to explore these ideas in future work.
The possibility of studying the tunneling phenomenon of

condensed bosons in spatially different regions separated by

a barrier has recently attracted some attenfi®b—34. In ACKNOWLEDGMENTS
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