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Bose-Einstein condensation in a one-dimensional interacting system
due to power-law trapping potentials

M. Bayindir, B. Tanatar, and Z. Gedik
Department of Physics, Bilkent University, Bilkent, 06533 Ankara, Turkey

~Received 31 August 1998!

We examine the possibility of Bose-Einstein condensation in one-dimensional interacting Bose gas sub-
jected to confining potentials of the formVext(x)5V0(uxu/a)g, in which g,2, by solving the Gross-Pitaevskii
equation within the semiclassical two-fluid model. The condensate fraction, chemical potential, ground state
energy, and specific heat of the system are calculated for various values of interaction strengths. Our results
show that a significant fraction of the particles is in the lowest energy state for a finite number of particles at
low temperature, indicating a phase transition for weakly interacting systems.@S1050-2947~99!00902-6#

PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Kh, 64.60.2i
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I. INTRODUCTION

The recent observations of Bose-Einstein condensa
~BEC! in trapped atomic gases@1–5# have renewed interes
in bosonic systems@6,7#. BEC is characterized by a macro
scopic occupation of the ground state forT,T0 , whereT0

depends on the system parameters. The success of ex
mental manipulation of externally applied trap potenti
brings about the possibility of examining two- or even on
dimensional Bose-Einstein condensates. Since the trans
temperatureT0 increases with decreasing system dimensi
it was suggested that BEC may be achieved more favor
in low-dimensional systems@8#. The possibility of BEC in
one- ~1D! and two-dimensional~2D! homogeneous Bos
gases is ruled out by the Hohenberg theorem@9#. However,
due to spatially varying potentials which break the trans
tional invariance, BEC can occur in low-dimensional inh
mogeneous systems. The existence of BEC is shown in a
noninteracting Bose gas in the presence of a gravitatio
field @10#, an attractive-d impurity @11#, and power-law trap-
ping potentials@12#. Recently, many authors have discuss
the possibility of BEC in 1D trapped Bose gases relevan
the magnetically trapped ultracold alkali-metal atoms@13–
18#. Pearson and his co-workers@19# studied the interacting
Bose gas in 1D power-law potentials employing the pa
integral Monte Carlo~PIMC! method. They have found tha
a macroscopically large number of atoms occupy the low
single-particle state in a finite system of hard-core boson
some critical temperature. It is important to note that
recent BEC experiments are carried out with a finite num
of atoms ~ranging from several thousands to several 106!,
therefore the thermodynamic limit argument in some theo
ical studies@15# does not apply here@8#.

The aim of this paper is to study the two-body interacti
effects on the BEC in 1D systems under power-law trap
tentials. For ideal bosons in harmonic oscillator traps tran
tion to a condensed state is prohibited. It is anticipated
external potentials more confining than the harmonic osc
tor type would be possible experimentally. It was also argu
@15# that in the thermodynamic limit there can be no BE
phase transition for nonideal bosons in 1D. Since the real
systems are weakly interacting and contain a finite numbe
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particles, we employ the mean-field theory@20,21# as applied
to a two-fluid model. Such an approach has been show
capture the essential physics in 3D systems@21#. The 2D
version@22# is also in qualitative agreement with the resu
of PIMC simulations on hard-core bosons@23#. In the re-
maining sections we outline the two-fluid model and pres
our results for an interacting 1D Bose gas in power-law p
tentials.

II. THEORY

In this paper we shall investigate the Bose-Einstein c
densation phenomenon for 1D interacting Bose gas confi
in a power-law potential:

Vext~x!5V0S uxu
a D g

, ~1!

whereV0 anda are some suitable energy and length para
eters defining the external potential, andg controls the con-
finement strength. Presumably, they can be experimen
adjusted. Using the semiclassical density of states, the t
sition temperatureT0 and the fraction of condensed particle
N0 /N for the noninteracting system were calculated as@12#

kBT05F N

kF~g!G~g!G
2g/~21g!

~2!

and

N0 /N512S T

T0
D 1/g11/2

, ~3!

wherek52(2m)1/2a/ghV0
1/g (m is the mass of bosons andh

is Planck’s constant!, and

F~g!5E
0

1 x1/g21dx

A12x
, ~4!

and

G~g!5E
0

` x1/g21/2dx

ex21
5G~1/g11/2!z~1/g11/2!, ~5!
1468 ©1999 The American Physical Society
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in which G(x) and z(x) are the gamma and the Rieman
zeta functions, respectively. The total energy of the nonin
acting system forT,T0 (m50) is given by

^E&
NkBT0

5
G~1/g13/2!z~1/g13/2!

G~1/g11/2!z~1/g11/2! S T

T0
D 1/g13/2

. ~6!

Figure 1 shows the variation of the critical temperatureT0 as
a function of the exponentg in the trapping potential. It
should be noted thatT0 vanishes for harmonic potential du
to the divergence of the functionG(g52). It appears that
the maximumT0 is attained forg'0.5, and for a constan
trap potential@i.e., Vext(x)5V0# the BEC disappears, consis
tent with the Hohenberg theorem.

We are interested in how the short-range interaction
fects modify the picture presented above. To this end,
employ the mean-field formalism and describe the collec
dynamics of a Bose condensate by its macroscopic ti
dependent wave functionY(x,t)5C(x)exp(2imt), wherem
is the chemical potential. The condensate wave func
C(x) satisfies the Gross-Pitaevskii~GP! equation@24,25#

F2
\2

2m

d2

dx2 1Vext~x!12gn1~x!1gC2~x!GC~x!5mC~x!,

~7!

whereg is the repulsive, short-range interaction strength, a
n1(x) is the average noncondensed particle distribution fu
tion. We treat the interaction strengthg as a phenomenologi
cal parameter without going into the details of actually rel
ing it to any microscopic description@26#. In the
semiclassical two-fluid model@27,28# the noncondensed pa
ticles can be treated as bosons in an effective poten
@21,29#

Veff~x!5Vext~x!12gn1~x!12gC2~x!. ~8!

The density distribution function is given by

n1~x!5E dp

2p\

1

exp$@p2/2m1Veff~x!2m#/kBT%21
,

~9!

FIG. 1. The variation of the critical temperatureT0 with the
external potential exponentg.
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and the total number of particlesN fixes the chemical poten
tial through the relation

N5N01E r~E!dE

exp@~E2m!/kBT#21
, ~10!

whereN05*C2(x)dx is the number of condensed particle
and the semiclassical density of states is determined by

r~E!5
A2m

h E
Veff~x!,E

dx

AE2Veff~x!
. ~11!

The GP equation yields a simple solution when the kine
energy term is neglected~the Thomas-Fermi approximation!,

C2~x!5
m2Vext~x!22gn1~x!

g
u@m2Vext~x!22gn1~x!#,

~12!

where u@x# is the unit step function. More precisely, th
Thomas-Fermi approximation@7,20,30# would be valid when
the interaction energy;gN0 /L far exceeds the kinetic en
ergy \2/2mL2, whereL is the spatial extent of the conden
sate cloud. For a linear trap potential~i.e., g51), a varia-
tional estimate for L is given by L
5@\2/2m(p/2)1/22a/V0#1/3. We note that the Thomas-Ferm
approximation would break down for temperatures close
T0 whereN0 is expected to become very small.

The above set of equations@Eqs.~9!–~12!# must be solved
self-consistently to obtain the various physical quantit
such as the chemical potentialm(N,T), the condensate frac
tion N0 /N, and the effective potentialVeff . In a 3D system,
Minguzzi et al. @21# solved a similar system of equation
numerically and also introduced an approximate semiana
cal solution by treating the interaction effects perturbative
Motivated by the success@21,22# of the perturbative ap-
proach we consider a weakly interacting system in 1D.
zero order ingn1(r ), the effective potential becomes

Veff~x!5H Vext~x! if m,Vext~x!

2m2Vext~x! if m.Vext~x!.
~13!

Figure 2 displays the typical form of the effective potent
within our semianalytic approximation scheme. The m
noteworthy aspect is that the effective potential that affe
the bosons acquires a double-well shape because of th
teractions. We can explain this result by a simple argum
Let the number of particles in the left and right wells beNL
andNR , respectively, so thatN5NL1NR . The nonlinear or
interaction term in the GP equation may be approximat
regarded asV5NL

21NR
2 . Therefore the problem reduces

the minimization of the interaction potentialV, which is
achieved forNL5NR .

The number of condensed atoms is calculated to be

N05
2ga

~11g!gV0
1/g m1/g11. ~14!

The density of states is given by
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r~E!5kH H~g,m,E!~2m2E!1/g21/2 if m,E,2m

F~g!E1/g21/2 if E.2m,
~15!

where

H~g,m,E!5E
1

E/~2m2E! x1/g21dx

Ax21
.

Using the above density of states, conservation of total n
ber of particles gives us a transcendental equation for
chemical potential

N5N01k~kBT!1/g11/2I ~g,m,T!, ~16!

where

I ~g,m,T!5F~g!E
2m/kBT

` x1/g21/2dx

zex21

1E
m/kBT

2m/kBT

H~g,m,xkBT!

3
~2m/kBT2x!1/g21/2dx

zex21
,

in which z5e2m/kBT. The chemical potentialm(N,T) is de-
termined from the solution of Eq.~16!. Finally, the total
energy of the interacting system can be written as

^E&5@^E&nc~N2N0!/21^E&c#/N, ~17!

where^E&nc is the energy of the noncondensed particles

^E&nc5E Er~E!dE

exp@~E2m!/kBT#21

5k~kBT!1/g11/2J~g,m,T!, ~18!

where

FIG. 2. Effective potentialVeff(x) in the presence of interactio
@x05(m/V0)1/ga#. Thick dotted line represents the lower part of t
external potentialVext(x).
-
e

J~g,m,T!5E
2m/kBT

` x1/g11/2dx

zex21

1E
m/kBT

2m/kBT

H~g,m,x!
~2m/kBT2x!1/g11/2dx

zex21

and ^E&c is the energy of the particles in the condensate,

^E&c5
g

2 E C4~x!dx5
2ag2m211/g

~11g!~2g11!gV0
1/g . ~19!

The kinetic energy of the condensed particles is neglec
within our Thomas-Fermi approximation to the GP equatio

III. RESULTS AND DISCUSSION

Up to now we have based our formulation on arbitraryg,
but in the rest of this work we shall present our results
g51. Our calculations show that the results for other valu
of g are qualitatively similar. In Figs. 3 and 4 we calcula
the condensate fraction as a function of temperature for v
ous values of the interaction strengthh5g/V0a ~at constant

FIG. 3. The condensate fractionN0 /N versus temperatureT/T0

for N5105 and for various interaction strengthsh.

FIG. 4. The condensed fractionN0 /N versus temperatureT/T0

for h50.001 and for different numbers of particlesN.
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N5105) and different numbers of particles~at constanth
50.001), respectively. We observe that as the interac
strengthh is increased, the depletion of the condensate
comes more appreciable~Fig. 3!. As shown in the corre-
sponding figures, a significant fraction of the particles oc
pies the ground state of the system forT,T0 .

The temperature dependence of the chemical potenti
plotted in Figs. 5 and 6 for various interaction strengths~con-
stant N5105) and different numbers of particles~constant
h50.001), respectively. Effects of interactions onm(N,T)
are seen as large deviations from the noninteracting beha
for T,T0 .

In Fig. 7 we show the ground state energy of an intera
ing 1D system of bosons as a function of temperature
different interaction strengths. For smallh, andT,T0 , ^E&
is similar to that in a noninteracting system. Ash increases,
some differences start to become noticeable, and forh'1
we observe a small bump developing in^E&. This may indi-
cate the breakdown of our approximate scheme for la
enough interaction strengths, as we can find no fundame
reason for such behavior. It is also possible that the Thom
Fermi approximation employed is violated as the transit

FIG. 5. The temperature dependence of the chemical pote
m(N,T) for various interaction strengths and forN5105 particles.

FIG. 6. The temperature dependence of the chemical pote
m(N,T) for different numbers of particlesN and forh50.001.
n
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to a condensed state is approached. Although it is conc
able to imagine the full solution of the mean-field equatio
@Eqs.~9!–~12!# may remedy the situation for larger values
h, the PIMC simulations@19# also seem to indicate that th
condensation is inhibited for strongly interacting system
The results for the specific heat calculated from the to
energy curves, i.e.,CV5d^E&/dT, are depicted in Fig. 8.
The sharp peak atT5T0 tends to be smoothed out wit
increasing interaction strength. It is known that the effects
a finite number of particles are also responsible for su
behavior@20#. In our treatment these two effects are not d
entangled. It was pointed out by Ingold and Lambrecht@14#
that the identification of the BEC should also be based on
behavior ofCV aroundT'T0 . Our calculations indicate tha
the peak structure ofCV remains even in the presence
weak interactions, thus we are led to conclude that a t
transition to a Bose-Einstein condensed state is predi
within the present approach.

IV. CONCLUDING REMARKS

In this work we have applied the mean-field, semiclassi
two-fluid model to interacting bosons in 1D power-law tra

ial

ial

FIG. 7. The temperature dependence of the total energy of
Bose gas for various interaction strengthsh and the Maxwell-
Boltzmann distribution forN5105 particles.

FIG. 8. The temperature dependence of the specific heatCV for
various interaction strengthsh and the Maxwell-Boltzmann distri-
bution for N5105 particles.
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potentials. We have found that for a range of interact
strengths the behavior of the thermodynamic quantities
sembles that of noninteracting bosons. Thus BEC in
sense of macroscopic occupation of the ground state oc
when the short-range interparticle interactions are not
strong. Our results are in qualitative agreement with the
cent PIMC simulations@19# of similar systems. Both 2D and
1D simulation results@19,23# indicate a phase transition for
finite number system, in contrast to the situation in the th
modynamic limit. Since systems of much larger size can
studied within the present approach, our work compleme
the PIMC calculations.

The possibility of studying the tunneling phenomenon
condensed bosons in spatially different regions separate
a barrier has recently attracted some attention@31–34#. In
particular, Dalfovoet al. @32# have shown that a Josephso
type tunneling current may exist for bosons under the in
ence of a double-well trap potential. Zapataet al. @34# have
estimated the Josephson coupling energy in terms of the
densate density. It is interesting to speculate on such a
an
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sibility in the present case, since the effective potential in
description is of the form of a double-well potential~cf. Fig.
2!. In our treatment, the interaction effects modify the sing
well trap potential into one which exhibits two minima. Thu
if we think of this effective potential as the one affecting t
condensed bosons and according to the general argum
@31–34# based on two weakly connected systems we sho
have an oscillating flux of particles when the chemical p
tential in the two wells is different. Any configuration wit
NLÞNR , which is always the case for an odd number
bosons, will result in an oscillatory motion. It would be in
teresting to explore these ideas in future work.
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