796 research outputs found

    On the interpretation of Michelson-Morley experiments

    Get PDF
    Recent proposals for improved optical tests of Special Relativity have renewed interest in the interpretation of such tests. In this paper we discuss the interpretation of modern realizations of the Michelson-Morley experiment in the context of a new model of electrodynamics featuring a vector-valued photon mass. This model is gauge invariant, unlike massive-photon theories based on the Proca equation, and it predicts anisotropy of both the speed of light and the electric field of a point charge. The latter leads to an orientation dependence of the length of solid bodies which must be accounted for when interpreting the results of a Michelson-Morley experiment. Using a simple model of ionic solids we show that, in principle, the effect of orientation dependent length can conspire to cancel the effect of an anisotropic speed of light in a Michelson-Morley experiment, thus, complicating the interpretation of the results.Comment: To appear in Phys.Lett.

    Gravity-induced birefringence within the framework of Poincare gauge theory

    Get PDF
    Gauge theories of gravity provide an elegant and promising extension of general relativity. In this paper we show that the Poincar\'e gauge theory exhibits gravity-induced birefringence under the assumption of a specific gauge invariant nonminimal coupling between torsion and Maxwell's field. Furthermore we give for the first time an explicit expression for the induced phaseshift between two orthogonal polarization modes within the Poincar\'e framework. Since such a phaseshift can lead to a depolarization of light emitted from an extended source this effect is, in principle, observable. We use white dwarf polarimetric data to constrain the essential coupling constant responsible for this effect.Comment: 12 pages, accepted for publication by Physical Review

    EUV Sunspot Plumes Observed with SOHO

    Get PDF
    Bright EUV sunspot plumes have been observed in five out of nine sunspot regions with the Coronal Diagnostic Spectrometer -- CDS on SOHO. In the other four regions the brightest line emissions may appear inside the sunspot but are mainly concentrated in small regions outside the sunspot areas. These results are in contrast to those obtained during the Solar Maximum Mission, but are compatible with the Skylab mission results. The present observations show that sunspot plumes are formed in the upper part of the transition region, occur both in magnetic unipolar-- and bipolar regions, and may extend from the umbra into the penumbra.Comment: 8 pages, 3 figures, to be published in ApJ Letter

    Torsion nonminimally coupled to the electromagnetic field and birefringence

    Full text link
    In conventional Maxwell--Lorentz electrodynamics, the propagation of light is influenced by the metric, not, however, by the possible presence of a torsion T. Still the light can feel torsion if the latter is coupled nonminimally to the electromagnetic field F by means of a supplementary Lagrangian of the type l^2 T^2 F^2 (l = coupling constant). Recently Preuss suggested a specific nonminimal term of this nature. We evaluate the spacetime relation of Preuss in the background of a general O(3)-symmetric torsion field and prove by specifying the optical metric of spacetime that this can yield birefringence in vacuum. Moreover, we show that the nonminimally coupled homogeneous and isotropic torsion field in a Friedmann cosmos affects the speed of light.Comment: Revtex, 12 pages, no figure

    Comparison of Plume Dynamics for Laser Ablated Metals: Al and Ti

    Get PDF
    Emissive plumes from pulsed laser ablation of bulk Ti and Al from KrF laser irradiation at laser fluence up to 3.5 J/cm2 and argon background pressures of 0–1 Torr have been observed using gated intensified charged-coupled device imagery. Mass loss for Ti increases from 0.1 to 0.8 μg/pulse as pulse energy increase from 174 to 282 mJ/pulse (35–170 photons/atom) and decreases by ∼30% as pressure increases from vacuum to 1 Torr. Early plume energies are described by the free expansion velocities of 1.57 ± 0.02 and of 1.81 ± 0.07 cm/μs for Ti and Al, respectively, and up to 90% of the incoming laser energy can be attributed to the Al shock front in the mid-field. The ablation thresholds of 90 ± 27 mJ (1.12 ± 0.34 J/cm2) for Ti and 126 ± 13 mJ (1.58 ± 0.16 J/cm2) for Al also represent 30%–70% of the incident laser energy. The decrease in mass loss at higher pressures is attributed to plasma shielding of the target surface

    A 727/JT8D-100 series engine exhaust system propulsion performance model test

    Get PDF
    The results are presented from testing one-eighth scale models of the Pratt and Whitney aircraft reference and Boeing nozzles for the JT8D-100 series mixed flow engines. The objective of the test was to obtain the nozzle velocity and flow coefficients for the reference configurations and compare these with the Boeing configurations which incorporated a longer splitter between the fan and primary flows. A further comparison was made between the JT8D-100 series nozzles and the Boeing JT8D-9/727 production nozzle performance. A statistical analysis was used to compare configurations which showed the performance (velocity coefficient) of the reference and the Boeing configuration was the same for the JT8D-109. It also showed no difference between reference and the Boeing configuration for the JT8D-115 and no difference for the JT8D-117 nozzles. Bypass ratio (match) was shown to be equally dependent on splitter position as on nozzle area within the range investigated. The nozzles were very similar in flow coefficient within an engine family. Excellent profile data was recorded. The effects of swirl on the nozzle performance was examined and found to degrade the velocity and flow coefficients

    On Loop Quantum Gravity Phenomenology and the Issue of Lorentz Invariance

    Get PDF
    A simple model is constructed which allows to compute modified dispersion relations with effects from loop quantum gravity. Different quantization choices can be realized and their effects on the order of corrections studied explicitly. A comparison with more involved semiclassical techniques shows that there is agreement even at a quantitative level. Furthermore, by contrasting Hamiltonian and Lagrangian descriptions we show that possible Lorentz symmetry violations may be blurred as an artifact of the approximation scheme. Whether this is the case in a purely Hamiltonian analysis can be resolved by an improvement in the effective semiclassical analysis.Comment: 16 pages, RevTeX
    • …
    corecore