8,019 research outputs found

    Multiple transitions of the spin configuration in quantum dots

    Get PDF
    Single electron tunneling is studied in a many electron quantum dot in high magnetic fields. For such a system multiple transitions of the spin configuration are theoretically predicted. With a combination of spin blockade and Kondo effect we are able to detect five regions with different spin configurations. Transitions are induced with changing electron numbers.Comment: 4 pages, 5 figure

    Suppression of decoherence in a graphene monolayer ring

    Get PDF
    The influence of high magnetic fields on coherent transport is investigated. A monolayer graphene quantum ring is fabricated and the Aharonov-Bohm effect is observed. For increased magnitude of the magnetic field higher harmonics appear. This phenomenon is attributed to an increase of the phase coherence length due to reduction of spin flip scattering

    Spin Blockade in Capacitively Coupled Quantum Dots

    Get PDF
    We present transport measurements on a lateral double dot produced by combining local anodic oxidation and electron beam lithography. We investigate the tunability of our device and demonstrate, that we can switch between capacitive and tunnel coupling. In the regime of capacitive coupling we observe the phenomenon of spin blockade in a magnetic field and analyze the influence of capacitive interdot coupling on this effect.Comment: 4 pages, 3 figure

    Non-invasive detection of molecular bonds in quantum dots

    Get PDF
    We performed charge detection on a lateral triple quantum dot with star-like geometry. The setup allows us to interpret the results in terms of two double dots with one common dot. One double dot features weak tunnel coupling and can be understood with atom-like electronic states, the other one is strongly coupled forming molecule-like states. In nonlinear measurements we identified patterns that can be analyzed in terms of the symmetry of tunneling rates. Those patterns strongly depend on the strength of interdot tunnel coupling and are completely different for atomic- or molecule-like coupled quantum dots allowing the non-invasive detection of molecular bonds.Comment: 4 pages, 4 figure

    Parasitic pumping currents in an interacting quantum dot

    Full text link
    We analyze the charge and spin pumping in an interacting dot within the almost adiabatic limit. By using a non-equilibrium Green's function technique within the time-dependent slave boson approximation, we analyze the pumped current in terms of the dynamical constraints in the infinite-U regime. The results show the presence of parasitic pumping currents due to the additional phases of the constraints. The behavior of the pumped current through the quantum dot is illustrated in the spin-insensitive and in the spin-sensitive case relevant for spintronics applications

    Bimodal Counting Statistics in Single Electron Tunneling through a Quantum Dot

    Get PDF
    We explore the full counting statistics of single electron tunneling through a quantum dot using a quantum point contact as non-invasive high bandwidth charge detector. The distribution of counted tunneling events is measured as a function of gate and source-drain-voltage for several consecutive electron numbers on the quantum dot. For certain configurations we observe super-Poissonian statistics for bias voltages at which excited states become accessible. The associated counting distributions interestingly show a bimodal characteristic. Analyzing the time dependence of the number of electron counts we relate this to a slow switching between different electron configurations on the quantum dot

    Electron spin relaxation in n-type InAs quantum wires

    Full text link
    We investigate the electron spin relaxation of nn-type InAs quantum wires by numerically solving the fully microscopic kinetic spin Bloch equations with the relevant scattering explicitly included. We find that the quantum-wire size and the growth direction influence the spin relaxation time by modulating the spin-orbit coupling. Due to inter-subband scattering in connection with the spin-orbit interaction, spin-relaxation in quantum wires can show different characteristics from those in bulk or quantum wells and can be effectively manipulated by various means.Comment: 8 pages, 6 figure

    Berry Phase Transition in Twisted Bilayer Graphene

    Get PDF
    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between pi and 2pi is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.Comment: 20 pages main paper + 10 pages supporting informatio

    Excitation Induced Dephasing in Semiconductor Quantum Dots

    Full text link
    A quantum kinetic theory is used to compute excitation induced dephasing in semiconductor quantum dots due to the Coulomb interaction with a continuum of states, such as a quantum well or a wetting layer. It is shown that a frequency dependent broadening together with nonlinear resonance shifts are needed for a microscopic explanation of the excitation induced dephasing in such a system, and that excitation induced dephasing for a quantum-dot excitonic resonance is different from quantum-well and bulk excitons.Comment: 6 pages, 4 figures. Extensively revised text, two figures change

    Interaction-Induced Spin Polarization in Quantum Dots

    Get PDF
    The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.Comment: 4 pages, 5 figure
    • …
    corecore