39 research outputs found

    Methods, systems, and apparatus for storage, transfer and/or control of information via matter wave dynamics

    Get PDF
    Methods, systems and apparatus for generating atomic traps, and for storing, controlling and transferring information between first and second spatially separated phase-coherent objects, or using a single phase-coherent object. For plural objects, both phase-coherent objects have a macroscopic occupation of a particular quantum state by identical bosons or identical BCS-paired fermions. The information may be optical information, and the phase-coherent object(s) may be Bose-Einstein condensates, superfluids, or superconductors. The information is stored in the first phase-coherent object at a first storage time and recovered from the second phase-coherent object, or the same first phase-coherent object, at a second revival time. In one example, an integrated silicon wafer-based optical buffer includes an electrolytic atom source to provide the phase-coherent object(s), a nanoscale atomic trap for the phase-coherent object(s), and semiconductor-based optical sources to cool the phase-coherent object(s) and provide coupling fields for storage and transfer of optical information

    Observation of Hybrid Soliton Vortex-Ring Structures in Bose-Einstein Condensates

    Full text link
    We present the experimental discovery of compound structures comprising solitons and vortex rings in Bose-Einstein condensates (BECs). We examine both their creation via soliton-vortex collisions and their subsequent development, which is largely governed by the dynamics of interacting vortex rings. A theoretical model in three-dimensional (3D) cylindrical symmetry is also presented.Comment: 5 pages, 4 figures; submitted to PR

    Observation of Quantum Shock Waves Created with Ultra Compressed Slow Light Pulses in a Bose-Einstein Condensate

    Full text link
    We have used an extension of our slow light technique to provide a method for inducing small density defects in a Bose-Einstein condensate. These sub-resolution, micron-sized defects evolve into large amplitude sound waves. We present an experimental observation and theoretical investigation of the resulting breakdown of superfluidity. We observe directly the decay of the narrow density defects into solitons, the onset of the `snake' instability, and the subsequent nucleation of vortices.Comment: 15 pages, 5 figure

    Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates

    Full text link
    A Bose-Einstein condensate confined in an optical dipole trap is used to generate long-term coherent memory for light, and storage times of more than one second are observed. Phase coherence of the condensate as well as controlled manipulations of elastic and inelastic atomic scattering processes are utilized to increase the storage fidelity by several orders of magnitude over previous schemes. The results have important applications for creation of long-distance quantum networks and for generation of entangled states of light and matter.Comment: published version of the pape

    Electro-Optical Nanotraps for Neutral Atoms

    Full text link
    We propose a new class of nanoscale electro-optical traps for neutral atoms. A prototype is the toroidal trap created by a suspended, charged carbon nanotube decorated with a silver nanosphere dimer. An illuminating laser field, blue detuned from an atomic resonance frequency, is strongly focused by plasmons induced in the dimer and generates both a repulsive potential barrier near the nanostructure surface and a large viscous damping force that facilitates trap loading. Atoms with velocities of several meters per second may be loaded directly into the trap via spontaneous emission of just two photons.Comment: 5 pages, 3 figures. Fig. 1 appeared on the cover of the January 23, 2009 issue of PR

    Field Ionization of Cold Atoms near the Wall of a Single Carbon Nanotube

    Full text link
    We observe the capture and field ionization of individual atoms near the side wall of a single suspended nanotube. Extremely large cross sections for ionization from an atomic beam are observed at modest voltages due to the nanotube's small radius and extended length. The effects of the field strength on both the atomic capture and the ionization process are clearly distinguished in the data, as are prompt and delayed ionizations related to the locations at which they occur. Efficient and sensitive neutral atom detectors can be based on the nanotube capture and wall ionization processes.Comment: Article (8 pages) and Supplementary Information (4 pages). Associated figure appeared on cover of the April 2, 2010 issue of PRL

    A High Flux Source of Cold Rubidium

    Full text link
    We report the production of a continuous, slow, and cold beam of 87-Rb atoms with an unprecedented flux of 3.2 x 10^12 atoms/s and a temperature of a few milliKelvin. Hot atoms are emitted from a Rb candlestick atomic beam source and transversely cooled and collimated by a 20 cm long atomic collimator section, augmenting overall beam flux by a factor of 50. The atomic beam is then decelerated and longitudinally cooled by Zeeman slowing
    corecore