25 research outputs found

    Speed Error Mitigation for a DSP-Based Resolver-to-Digital Converter Using Auto-Tuning Filters

    Get PDF
    Modern resolver-to-digital converters (RDC) are typically implemented using DSP techniques to reduce hardware footprint and enhanced system accuracy. However, in such implementations, both resolver sensor and ADC channel unbalances introduce significant errors particularly in the speed output of the tracking loop. The frequency spectrum of the output error is variable depending on the resolver mechanical velocity. This paper presents the design of an auto-tuning output filter based on the interpolation of pre-computed filters for a DSP-based RDC with a type-II tracking loop. A fourth-order peak and a second-order high pass filter are designed and tested for an experimental RDC. The experimental results demonstrate significant reduction of the peak-to-peak error in the estimated speed

    Optimal Placement of Remote-Controlled Switches in Distribution Networks in the Presence of Distributed Generators

    No full text
    A two-level optimization method is presented to find the optimal number and location of conventional protective devices to be upgraded to remote-controlled switches (RCSs) for an existing distribution network (DN). The effect of distributed generation (DG) on this problem is considered. In the first level, a nonlinear binary program is proposed to maximize the restored customers subject to technical and topological constraints. All feasible interchanges between protective devices and ties involved in the restoration, when a fault occurs at all possible locations are found considering switching dependencies. In the second level, a nonlinear cost function, combining the expected cost of interruptions (ECOST) and the switch cost, is minimized with respect to the location of RCSs. The expected cost function is computed based on the optimum restoration policies obtained from the first level. The optimum placement of RCSs using the proposed algorithm is tested on a 4-feeder 1069-node test system and compared to the solution obtained with a genetic algorithm (GA) on the same system

    Classification of Many Abnormal Events in Radial Distribution Feeders Using the Complex Morlet Wavelet and Decision Trees

    No full text
    Monitoring of abnormal events in a distribution feeder by using a single technique is a challenging task. A number of abnormal events can cause unsafe operation, including a high impedance fault (HIF), a partial breakdown to a cable insulation, and a circuit breaker (CB) malfunction due to capacitor bank de-energization. These abnormal events are not detectable by conventional protection schemes. In this paper, a new technique to identify distribution feeder events is proposed based on the complex Morlet wavelet (CMW) and on a decision tree (DT) classifier. First, the event is detected using CMW. Subsequently, a DT using event signatures classifies the event as normal operation, continuous and non-continuous arcing events (C.A.E. and N.C.A.E.). Additional information from the supervisory control and data acquisition (SCADA) can be used to precisely identify the event. The proposed method is meticulously tested on the IEEE 13- and IEEE 34-bus systems and has shown to correctly classify those events. Furthermore, the proposed method is capable of detecting very high impedance incipient faults (IFs) and CB restrikes at the substation level with relatively short detection time. The proposed method uses only current measurements at a low sampling rate of 1440 Hz yielding an improvement of existing methods that require much higher sampling rates

    Finite-Element Models for Open-Air Power Lines in Broadband PLC

    No full text

    Cancelation of Torque Ripples in PMSM via a Novel Minimal Parameter Harmonic Flux Estimator

    No full text
    corecore