205 research outputs found

    Royal Jelly Facilitates Restoration of the Cognitive Ability in Trimethyltin-Intoxicated Mice

    Get PDF
    Trimethyltin (TMT) is a toxic organotin compound that induces acute neuronal death selectively in the hippocampal dentate gyrus (DG) followed by cognition impairment; however the TMT-injured hippocampal DG itself is reported to regenerate the neuronal cell layer through rapid enhancement of neurogenesis. Neural stem/progenitor cells (NS/NPCs) are present in the adult hippocampal DG, and generate neurons that can function for the cognition ability. Therefore, we investigated whether royal jelly (RJ) stimulates the regenerating processes of the TMT-injured hippocampal DG, and found that orally administered RJ significantly increased the number of DG granule cells and simultaneously improved the cognitive impairment. Furthermore, we have already shown that RJ facilitates neurogenesis of cultured NS/NPCs. These present results, taken together with previous observations, suggest that the orally administered RJ may be a promising avenue for ameliorating neuronal function by regenerating hippocampal granule cells that function in the cognition process

    Catheter Displacement into Inferior Epigastric Vein Causing Local Phlebitis and Cellulitis

    Get PDF
    Catheter insertion for intravenous hyperalimentation is a commonly and widely used clinical technique. When compared with the incidence of complications associated with insertions into the internal jugular vein or the subclavian vein, complications associated with insertions into the femoral vein are less frequent. In this paper, we describe a very rare complication of femoral vein catheter insertion—namely, catheter displacement into the inferior epigastric vein

    Effects of Augmented Reality Experience on Risk Perception

    Get PDF
    In this study, we focused on AR (Augmented Reality) as a useful tool for people who have never suffered from disaster to think of disasters that may occur in the future. We first created an emergency risk recognition process model to investigate the effect on risk recognition. And we set the rubric based on that model. Next, we designed a questionnaire based on that rubric. We investigated at the “Sona Area”, a disaster prevention learning in the Tokyo Rinkai Disaster Prevention Park. And we targeted the AR included in the experiential learning tour called “72h TOUR directly under Tokyo”. As a result, it became clear that the AR experience raised people’s awareness of disaster prevention. They also felt that they needed more disaster prevention measures in the future. In addition, the AR experience has raised awareness that disasters can occur around them. However, changes in cognition and behavior are different, so we need to consider them.本調査は、広島大学大学院総合科学研究科の文理融合リサーチマネージャープログラムの学生独自プロジェクトの助成を受けたものである

    Elevated mycobacterium avium subsp. paratuberculosis (MAP) antibody titer in Japanese multiple sclerosis.

    Get PDF
    To investigate whether antibody production against mycobacterium avium subsp. paratuberculosis (MAP) is related to clinical characteristics of multiple sclerosis (MS) and human leukocyte antigen (HLA) alleles, IgG antibody against three MAP peptides and two human peptides homologous to MAP were measured in sera from 103 MS patients and 50 healthy controls (HCs). MS patients had higher IgG levels against MAP2694295-303 (MAP2694-IgG) than HCs, while the other antibodies were comparable. Multivariate analysis demonstrated that higher MAP2694-IgG titers were associated with higher EDSS scores, but not with HLA alleles or dairy product consumption. Immune response against MAP may worsen MS disability

    Metalloproteinase regulation improves in vitro generation of efficacious platelets from mouse embryonic stem cells

    Get PDF
    Embryonic stem cells (ESCs) could potentially compensate for the lack of blood platelets available for use in transfusions. Here, we describe a new method for generating mouse ESC-derived platelets (ESPs) that can contribute to hemostasis in vivo. Flow cytometric sorting of cells from embryoid bodies on day 6 demonstrated that c-Kit+ integrin αIIb (αIIb)+ cells, but not CD31+ cells or vascular endothelial cadherin+ cells, are capable of megakaryopoiesis and the release of platelet-like structures by day 12. αIIbβ3-expressing ESPs exhibited ectodomain shedding of glycoprotein (GP)Ibα, GPV, and GPVI, but not αIIbβ3 or GPIbβ. ESPs showed impaired αIIbβ3 activation and integrin-mediated actin reorganization, critical events for normal platelet function. However, the administration of metalloproteinase inhibitors GM6001 or TAPI-1 during differentiation increased the expression of GPIbα, improving both thrombogenesis in vitro and posttransfusion recovery in vivo. Thus, the regulation of metalloproteinases in culture could be useful for obtaining high-quality, efficacious ESPs as an alternative platelet source for transfusions

    AMP N1-oxide, a unique compound of royal jelly, induces neurite outgrowth from PC12 cells via signaling by protein kinase A independent of that by mitogen-activated protein kinase

    Get PDF
    Earlier we identified adenosine monophosphate (AMP) N1-oxide as a unique compound of royal jelly (RJ) that induces neurite outgrowth (neuritegenesis) from cultured rat pheochromocytoma PC12 cells via the adenosine A2A receptor. Now, we found that AMP N1-oxide stimulated the phosphorylation of not only mitogen-activated protein kinase (MAPK) but also that of cAMP/calcium-response element-binding protein (CREB) in a dose-dependent manner. Inhibition of MAPK activation by a MEK inhibitor, PD98059, did not influence the AMP N1-oxide-induced neuritegenesis, whereas that of protein kinase A (PKA) by a selective inhibitor, KT5720, significantly reduced neurite outgrowth. AMP N1-oxide also had the activity of suppressing the growth of PC12 cells, which correlated well with the neurite outgrowth-promoting activity. KT5720 restored the growth of AMP N1-oxide-treated PC12 cells. It is well known that nerve growth factor suppresses proliferation of PC12 cells before causing stimulation of neuronal differentiation. Thus, AMP N1-oxide elicited neuronal differentiation of PC12 cells, as evidenced by generation of neurites, and inhibited cell growth through adenosine A2A receptor-mediated PKA signaling, which may be responsible for characteristic actions of RJ

    Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genome of <it>Helicobacter pylori</it>, an oncogenic bacterium in the human stomach, rapidly evolves and shows wide geographical divergence. The high incidence of stomach cancer in East Asia might be related to bacterial genotype. We used newly developed comparative methods to follow the evolution of East Asian <it>H. pylori </it>genomes using 20 complete genome sequences from Japanese, Korean, Amerind, European, and West African strains.</p> <p>Results</p> <p>A phylogenetic tree of concatenated well-defined core genes supported divergence of the East Asian lineage (hspEAsia; Japanese and Korean) from the European lineage ancestor, and then from the Amerind lineage ancestor. Phylogenetic profiling revealed a large difference in the repertoire of outer membrane proteins (including <it>oipA</it>, <it>hopMN</it>, <it>babABC</it>, <it>sabAB </it>and <it>vacA-2</it>) through gene loss, gain, and mutation. All known functions associated with molybdenum, a rare element essential to nearly all organisms that catalyzes two-electron-transfer oxidation-reduction reactions, appeared to be inactivated. Two pathways linking acetyl~CoA and acetate appeared intact in some Japanese strains. Phylogenetic analysis revealed greater divergence between the East Asian (hspEAsia) and the European (hpEurope) genomes in proteins in host interaction, specifically virulence factors (<it>tipα</it>), outer membrane proteins, and lipopolysaccharide synthesis (human Lewis antigen mimicry) enzymes. Divergence was also seen in proteins in electron transfer and translation fidelity (<it>miaA, tilS</it>), a DNA recombinase/exonuclease that recognizes genome identity (<it>addA</it>), and DNA/RNA hybrid nucleases (<it>rnhAB</it>). Positively selected amino acid changes between hspEAsia and hpEurope were mapped to products of <it>cagA</it>, <it>vacA</it>, <it>homC </it>(outer membrane protein), <it>sotB </it>(sugar transport), and a translation fidelity factor (<it>miaA</it>). Large divergence was seen in genes related to antibiotics: <it>frxA </it>(metronidazole resistance), <it>def </it>(peptide deformylase, drug target), and <it>ftsA </it>(actin-like, drug target).</p> <p>Conclusions</p> <p>These results demonstrate dramatic genome evolution within a species, especially in likely host interaction genes. The East Asian strains appear to differ greatly from the European strains in electron transfer and redox reactions. These findings also suggest a model of adaptive evolution through proteome diversification and selection through modulation of translational fidelity. The results define <it>H. pylori </it>East Asian lineages and provide essential information for understanding their pathogenesis and designing drugs and therapies that target them.</p

    Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen

    Get PDF
    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet. 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1–3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation

    Photoinduced swing of a diarylethene thin broad sword shaped crystal:a study on the detailed mechanism

    Get PDF
    We report a swinging motion of photochromic thin broad sword shaped crystals upon continuous irradiation with UV light. By contrast in thick crystals, photosalient phenomena were observed. The bending and swinging mechanisms are in fact due to molecular size changes as well as phase transitions. The first slight bending away from the light source is due to photocyclization-induced surface expansion, and the second dramatic bending toward UV incidence is due to single-crystal-to-single-crystal (SCSC) phase transition from the original phase I to phase IIUV. Upon visible light irradiation, the crystal returned to phase I. A similar SCSC phase transition with a similar volume decrease occurred by lowering the temperature (phase IIItemp). For both photoinduced and thermal SCSC phase transitions, the symmetry of the unit cell is lowered; in phase IIUV the twisting angle of disordered phenyl groups is different between two adjacent molecules, while in phase IIItemp, the population of the phenyl rotamer is different between adjacent molecules. In the case of phase IIUV, we found thickness dependent photosalient phenomena. The thin broad sword shaped crystals with a 3 mu m thickness showed no photosalient phenomena, whereas photoinduced SCSC phase transition occurred. In contrast, large crystals of several tens of mu m thickness showed photosalient phenomena on the irradiated surface where SCSC phase transition occurred. The results indicated that the accumulated strain, between isomerized and non-isomerized layers, gave rise to the photosalient phenomenon

    A Phthalimide Derivative That Inhibits Centrosomal Clustering Is Effective on Multiple Myeloma

    Get PDF
    Despite the introduction of newly developed drugs such as lenalidomide and bortezomib, patients with multiple myeloma are still difficult to treat and have a poor prognosis. In order to find novel drugs that are effective for multiple myeloma, we tested the antitumor activity of 29 phthalimide derivatives against several multiple myeloma cell lines. Among these derivatives, 2-(2,6-diisopropylphenyl)-5-amino-1H-isoindole-1,3- dione (TC11) was found to be a potent inhibitor of tumor cell proliferation and an inducer of apoptosis via activation of caspase-3, 8 and 9. This compound also showed in vivo activity against multiple myeloma cell line KMS34 tumor xenografts in ICR/SCID mice. By means of mRNA display selection on a microfluidic chip, the target protein of TC11 was identified as nucleophosmin 1 (NPM). Binding of TC11 and NPM monomer was confirmed by surface plasmon resonance. Immunofluorescence and NPM knockdown studies in HeLa cells suggested that TC11 inhibits centrosomal clustering by inhibiting the centrosomal-regulatory function of NPM, thereby inducing multipolar mitotic cells, which undergo apoptosis. NPM may become a novel target for development of antitumor drugs active against multiple myeloma
    corecore