431 research outputs found
Mathematical modelling of immune condition dynamics : a clinical perspective
This thesis describes the use of mathematical modelling to analyse the treatment of patients with immune disorders; namely, Multiple Myeloma, a cancer of plasma cells that create excess monoclonal antibody; and kidney transplants, where the immune system produces polygonal antibodies against the implanted organ. Linear and nonlinear compartmental models play an important role in the analysis of biomedical systems; in this thesis several models are developed to describe the in vivo kinetics of the antibodies that are prevalent for the two disorders studied. These models are validated against patient data supplied by clinical collaborators. Through this validation process important information regarding the dynamic properties of the clinical treatment can be gathered. In order to treat patients with excess immune antibodies the clinical staff wish to reduce these high levels in the patient to near healthy concentrations. To achieve this they have two possible treatment modalities: either using artificial methods to clear the material, a process known as apheresis, or drug therapy to reduce the production of the antibody in question. Apheresis techniques differ in their ability to clear different immune complexes; the effectiveness of a range of apheresis techniques is categorised for several antibody types and antibody fragments. The models developed are then used to predict the patient response to alternative treatment methods, and schedules, to find optimal combinations. In addition, improved measurement techniques that may offer an improved diagnosis are suggested. Whilst the overall effect of drug therapy is known, through measuring the concentration of antibodies in the patient’s blood, the short-term relationship between drug application and reduction in antibody synthesis is still not well defined; therefore, methods to estimate the generation rate of the immune complex, without the need for invasive procedures, are also presented
A model describing the multiphasic dynamics of mixed meal glucose responses in healthy subjects
Modelling of the glucose metabolism for the purpose of improving the diagnosis and therapy of diabetes mellitus has been the subject of research for decades. Despite this effort, conventional models describing postprandial glucose profiles of healthy subjects fail to include the phenomenon of biphasic glucose responses. Continuous glucose monitoring data recorded from five healthy subjects show that mono- and biphasic glucose responses from regular meals are equally common. We therefore developed a suitable parametric model, capable of producing mono- as well as biphasic meal responses. It is expressed by linear second order differential equation with a dual Gaussian input function. Additionally, a simple method for classifying meal responses into mono- or biphasic profiles was developed. Model inversion was performed using a fully Bayesian method. R2 values of model output compared to CGM data was 91.6 ± 8.3%, indicating the models ability of accurately describing a wide range of mixed meal glucose responses. Parameters were found to be associated with characteristics of individual meals. We suggest that the model could be used to objectively assess postprandial hyperglycemia, one of the main measures for glycemic control
Mathematical modelling of immune condition dynamics : a clinical perspective
This thesis describes the use of mathematical modelling to analyse the treatment of patients with immune disorders; namely, Multiple Myeloma, a cancer of plasma cells that create excess monoclonal antibody; and kidney transplants, where the immune system produces polygonal antibodies against the implanted organ. Linear and nonlinear compartmental models play an important role in the analysis of biomedical systems; in this thesis several models are developed to describe the in vivo kinetics of the antibodies that are prevalent for the two disorders studied. These models are validated against patient data supplied by clinical collaborators. Through this validation process important information regarding the dynamic properties of the clinical treatment can be gathered. In order to treat patients with excess immune antibodies the clinical staff wish to reduce these high levels in the patient to near healthy concentrations. To achieve this they have two possible treatment modalities: either using artificial methods to clear the material, a process known as apheresis, or drug therapy to reduce the production of the antibody in question. Apheresis techniques differ in their ability to clear different immune complexes; the effectiveness of a range of apheresis techniques is categorised for several antibody types and antibody fragments. The models developed are then used to predict the patient response to alternative treatment methods, and schedules, to find optimal combinations. In addition, improved measurement techniques that may offer an improved diagnosis are suggested. Whilst the overall effect of drug therapy is known, through measuring the concentration of antibodies in the patient’s blood, the short-term relationship between drug application and reduction in antibody synthesis is still not well defined; therefore, methods to estimate the generation rate of the immune complex, without the need for invasive procedures, are also presented.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Age-Related Differences in the Functional Demand Placed on the Lumbar Spine during Walking in Healthy Older versus Younger Men
Age-related declines in the musculoskeletal system may place additional demands on the lumbar spine during everyday activities such as walking. This study aimed to investigate age-related differences in the functional demand (FD) of walking on the lumbar spine in older and younger adults. A motion analysis system with integrated force plates was used to acquire kinematic and kinetic data on 12 older (67.3 ± 6.0 years) and 12 younger (24.7 ± 3.1 years) healthy men during walking at a self-selected speed along a 10 m walkway. Isokinetic dynamometry was used to acquire the maximal joint moment capacity of the lumbar spine. The FD of the lumbar spine was calculated as the muscle moment during key phases of the gait cycle (GC) relative to the maximum moment capacity of the lumbar spine. The difference in FD between age groups was not significant (p = 0.07) and there were no significant differences between the young group (YG) and older group (OG) for any individual phase in the GC. Despite the lack of statistical significance, the results indicate that a practical difference may exist, as walking was approximately 20% more functionally demanding on the lumbar spine in the OG compared to the YG. Therefore, older adults may employ modified gait strategies to reduce mechanical load whilst walking to fall within the limits of their maximal force-producing capacity in the lumbar spine, which may have implications for injury risk
Effects of resistance exercise and whey protein supplementation on cognitive function in older men:secondary analysis of a randomised, double-blind, placebo-controlled trial
Purpose: Ageing is associated with cognitive decline. This study investigated the individual and combined effects of resistance exercise (RE) and whey protein supplementation (PRO) on cognitive function in older men. Methods: In a pooled-groups analysis, 36 older men (age: 67 ± 4 years) were randomised to either RE (2 x/week; n = 18) or no exercise (NE; n = 18), and either PRO (2 × 25 g/d whey protein isolate; n = 18) or control (CON, 2 × 23.75 g maltodextrin/d; n = 18). A sub-analysis was also conducted between RE + CON (n = 9) and RE + PRO (n = 9). At baseline and 12 weeks, participants completed a battery of neuropsychological tests (CANTAB; Cambridge Cognition, UK) and neurobiological, inflammatory, salivary cortisol and insulin sensitivity biomarkers were quantified. Results: PRO improved executive function z-score (+0.31 ± 0.08) greater than CON (+0.06 ± 0.08, P = 0.03) and there was a trend towards improved global cognitive function (P = 0.053). RE and RE + PRO did not improve any cognitive function domains (p ≥ 0.07). RE decreased tumor necrosis factor-alpha (P = 0.02) and interleukin-6 (P = 0.048) concentrations compared to NE, but changes in biomarkers did not correlate with changes in cognitive domains. Muscle strength (r = 0.34, P = 0.045) and physical function (ρ = 0.35–0.51, P < 0.05) outcomes positively correlated with cognitive function domains at baseline, but only Δskeletal muscle index correlated with Δepisodic memory (r = 0.34, P = 0.046) following the intervention. Conclusion: In older men, PRO improved cognitive function, most notably executive functioning. RE did not improve any cognitive function domains but did decrease biomarkers of systemic inflammation. No synergistic effects were observed.</p
Investigation of paediatric PKU breath malodour, comparing glycomacropeptide with phenylalanine free L-amino acid supplements
In clinical practice, caregivers of children with phenylketonuria (PKU) report that their children have breath malodour. This might be linked to the regular consumption of low phenylalanine (Phe)/Phe-free protein substitutes (PS), which are an essential component of a low-Phe diet. Oral malodour can negatively affect interpersonal communication, lead to bullying, low self-esteem and social isolation. In this longitudinal cross-over study, exhaled volatile organic compounds (VOCs) were measured using gas chromatography - ion mobility spectrometry (GC-IMS). 40 children (20 PKU, 20 controls) were recruited. Subjects with PKU took either L-Amino Acid (L-AA) or Casein Glycomacropeptide (CGMP-AA) exclusively for 1 week, in a randomised order. On the 7th day, 7 exhaled breath samples were collected over a 10-hr period. Subjects then transferred to the other PS for a week and on day 7, provided 7 further breath samples. All subjects had a standardised menu using low-Phe food alternatives and all food intake was measured and recorded. In the PKU group, the aim was to collect samples 30-min after consuming PS. In 3 subjects, breath was collected 5-min post-PS consumption. Fasted L-AA and CGMP-AA breath samples contained a similar number of VOC peaks (10-12) as controls. Longitudinal breath testing results demonstrate that there was no significant difference in the number of exhaled VOCs, comparing L-AA or CGMP-AA with controls, or between PS (12-18 VOC peaks). Breath analysed immediately after consumption of PS (n=3) showed an immediate increase in the number of VOC peaks (25-30), but these were no longer detectable at 30-min post-consumption. This suggests PS have a transient effect on exhaled breath. Measurements taken 30-min after consuming L-AA or CGMP-AA were not significantly different to controls. This indicates that timing food and drinks with PS consumption may be a potential solution for carers to reduce or eliminate unpleasant PS-related breath odours. [Abstract copyright: © 2019 IOP Publishing Ltd.
Evaluating associations between the benefits and risks of drug therapy in type 2 diabetes:A joint modelling approach
This is the author accepted manuscript. The final version is available from Dove Medical Press via the DOI in this record.Data statement:
No additional data are available from the authors although the individual participant data from the ADOPT trial used in this study are available from GlaxoSmithKline on application via www.clinicalstudydatarequest.comObjective: Precision medicine drug therapy seeks to maximise efficacy and minimise harm for individual patients. This will be difficult if drug response and side-effects are positively associated, meaning patients likely to respond best are at increased risk of side-effects. We applied joint longitudinal-survival models to evaluate associations between drug response (longitudinal outcome) and risk of side-effects (survival outcome) for patients initiating type 2 diabetes therapy.
Study Design and Setting: Participants were randomised to metformin, sulfonylurea or thiazolidinedione therapy in the ADOPT drug-efficacy trial (n=4,351). Joint models were parameterised for: 1) current HbA1c response (change from baseline in HbA1c); 2) cumulative HbA1c response (total HbA1c change).
Results: With metformin, greater HbA1c response did not increase risk of gastrointestinal events (Hazard ratio (HR) per 1% absolute greater current response 0.82 (95% confidence interval 0.67,1.01); HR per 1% higher cumulative response 0.90 (0.81,1.00)). With sulfonylureas, greater current response was associated with increased risk of hypoglycaemia (HR 1.41 (1.04,1.91)). With thiazolidinediones, greater response was associated with increased risk of oedema (current HR 1.45 (1.05,2.01); cumulative 1.22 (1.07,1.38)) but not fracture.
Conclusion: Joint modelling provides a useful framework to evaluate the association between response to a drug and risk of developing side-effects. There may be great potential for widespread application of joint modelling to evaluate the risks and benefits of both new and established medications.This work was supported by the Medical Research Council (UK) (Grant MR/N00633X/1). ATH is a NIHR Senior Investigator and a Wellcome Trust Senior Investigator. ERP is a Wellcome Trust New Investigator (102820/Z/13/Z). AGJ is supported by an NIHR Clinician Scientist award. ATH and BMS are supported by the NIHR Exeter Clinical Research Facility. WEH received additional support from IQVIA and the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula (NIHR CLAHRC South West Peninsula)
Recommended from our members
Gain-of-Function Mutations in the K<sub>ATP</sub> Channel (KCNJ11) Impair Coordinated Hand-Eye Tracking
Background: Gain-of-function mutations in the ATP-sensitive potassium channel can cause permanent neonatal diabetes mellitus (PNDM) or neonatal diabetes accompanied by a constellation of neurological symptoms (iDEND syndrome). Studies of a mouse model of iDEND syndrome revealed that cerebellar Purkinje cell electrical activity was impaired and that the mice exhibited poor motor coordination. In this study, we probed the hand-eye coordination of PNDM and iDEND patients using visual tracking tasks to see if poor motor coordination is also a feature of the human disease.Methods: Control participants (n = 14), patients with iDEND syndrome (n = 6 or 7), and patients with PNDM (n = 7) completed three computer-based tasks in which a moving target was tracked with a joystick-controlled cursor. Patients with PNDM and iDEND were being treated with sulphonylurea drugs at the time of testing.Results: No differences were seen between PNDM patients and controls. Patients with iDEND syndrome were significantly less accurate than controls in two of the three tasks. The greatest differences were seen when iDEND patients tracked blanked targets, i.e. when predictive tracking was required. In this task, iDEND patients incurred more discrepancy errors (p = 0.009) and more velocity errors (p = 0.009) than controls.Conclusions: These results identify impaired hand-eye coordination as a new clinical feature of iDEND. The aetiology of this feature is likely to involve cerebellar dysfunction. The data further suggest that sulphonylurea doses that control the diabetes of these patients may be insufficient to fully correct their neurological symptoms.</p
Comment on “minimal and maximal models to quantitate glucose metabolism : tools to measure, to simulate and to run in silico clinical trials"
Comment on “Minimal and Maximal Models to Quantitate Glucose Metabolism: Tools to Measure, to Simulate and to Run in Silico Clinical Trials
- …