735 research outputs found

    Tri-layer superlattices: A route to magnetoelectric multiferroics?

    Full text link
    We explore computationally the formation of tri-layer superlattices as an alternative approach for combining ferroelectricity with magnetism to form magnetoelectric multiferroics. We find that the contribution to the superlattice polarization from tri-layering is small compared to typical polarizations in conventionalferroelectrics, and the switchable ferroelectric component is negligible. In contrast, we show that epitaxial strain and ``negative pressure'' can yield large, switchable polarizations that are compatible with the coexistence of magnetism, even in materials with no active ferroelectric ions.Comment: 10 pages, 3 figures; references added, and minor editorial changes mad

    Alien Registration- Hatt, William C. (Westbrook, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/20044/thumbnail.jp

    Alien Registration- Hatt, David C. (Gorham, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/31937/thumbnail.jp

    Rapid activation, desensitization, and resensitization of synaptic channels of crayfish muscle after glutamate pulses

    Get PDF
    Completely desensitizing excitatory channels were activated in outside-out patches of crayfish muscle membrane by applying glutamate pulses with switching times of approximately 0.2 ms for concentration changes. Channels were almost completely activated with 10 mM glutamate. Maximum activation was reached within 0.4 ms with greater than or equal to 1 mM glutamate. Channel open probability decayed with a time constant of desensitization of 2 ms with 10 mM glutamate and more rapidly at lower glutamate concentrations. The rate of beginnings of bursts (average number of beginnings of bursts per time bin) decayed even faster but approximately in proportion to the glutamate concentration. The dose-response curve for the channel open probability and for the rate of bursts had a maximum double-logarithmic slope of 5.1 and 4.2, respectively. Channels desensitized completely without opening at very low or slowly rising glutamate concentrations. Desensitization thus originates from a closed channel state. Resensitization was tested by pairs of completely desensitizing glutamate pulses. Sensitivity to the second pulse returned rapidly at pulse intervals between 1 and 2 ms and was almost complete with an interval of 3 ms. Schemes of channel activation by up to five glutamate binding steps, with desensitization by glutamate binding from closed states, are discussed. At high agonist concentrations bursts are predominantly terminated by desensitization. Quantal currents are generated by pulses of greater than 1 mM glutamate, and their decay is determined by the duration of presence of glutamate and possibly by desensitization

    Evaluation de méthodes de segmentation bayésiennes pour l'imagerie TEP en oncologie

    Get PDF
    Ce travail se concentre sur l'étude de méthodes de segmentation statistiques pour la détermination des volumes fonctionnels dans le cadre de l'imagerie TEP avec des applications en oncologie, en particulier la radiothérapie. Nous présentons ici une comparaison des performances de différentes approches (locale et globale, « dure » et « floue ») pour des images réelles d'acquisitions TEP du fantôme IEC. Les résultats obtenus sur images simulées sont ici confirmés: la méthode locale est la mieux adaptée, et fonctionne mieux que l'approche par chaînes de Markov cachées et la méthode de référence par seuillage

    Chemosensory properties of murine nasal and cutaneous trigeminal neurons identified by viral tracing

    Get PDF
    BACKGROUND: Somatosensation of the mammalian head is mainly mediated by the trigeminal nerve that provides innervation of diverse tissues like the face skin, the conjunctiva of the eyes, blood vessels and the mucouse membranes of the oral and nasal cavities. Trigeminal perception encompasses thermosensation, touch, and pain. Trigeminal chemosensation from the nasal epithelia mainly evokes stinging, burning, or pungent sensations. In vitro characterization of trigeminal primary sensory neurons derives largely from analysis of complete neuronal populations prepared from sensory ganglia. Thus, functional properties of primary trigeminal afferents depending on the area of innervation remain largely unclear. RESULTS: We established a PrV based tracing technique to identify nasal and cutaneous trigeminal neurons in vitro. This approach allowed analysis and comparison of identified primary afferents by means of electrophysiological and imaging measurement techniques. Neurons were challenged with several agonists that were reported to exhibit specificity for known receptors, including TRP channels and purinergic receptors. In addition, TTX sensitivity of sodium currents and IB4 binding was investigated. Compared with cutaneous neurons, a larger fraction of nasal trigeminal neurons showed sensitivity for menthol and capsaicin. These findings pointed to TRPM8 and TRPV1 receptor protein expression largely in nasal neurons whereas for cutaneous neurons these receptors are present only in a smaller fraction. The majority of nasal neurons lacked P2X(3 )receptor-mediated currents but showed P2X(2)-mediated responses when stimulated with ATP. Interestingly, cutaneous neurons revealed largely TTX resistant sodium currents. A significantly higher fraction of nasal and cutaneous afferents showed IB4 binding when compared to randomly chosen trigeminal neurons. CONCLUSION: In conclusion, the usability of PrV mediated tracing of primary afferents was demonstrated. Using this technique it could be shown that compared with neurons innervating the skin nasal trigeminal neurons reveal pronounced chemosensitivity for TRPM8 and TRPV1 channel agonists and only partially meet properties typical for nociceptors. In contrast to P2X(3 )receptors, TRPM8 and TRPV1 receptors seem to be of pronounced physiological relevance for intranasal trigeminal sensation

    The Nebraska Mathematics Readiness Project: Year 1 Evaluation Report

    Get PDF
    The Nebraska Math Readiness Project (NMRP) is a targeted curriculum designed for seniors who have plans of attending college, yet lack the foundational math skills needed for college-level courses. They are given a fourth-year mathematics class to help them improve their mathematical skills and prepare for required college math courses. The project is a collaboration between community colleges across the state and high schools within the Nebraska school districts
    corecore