30 research outputs found

    Acidocalcisomes as Calcium- and Polyphosphate-Storage Compartments during Embryogenesis of the Insect Rhodnius prolixus Stahl

    Get PDF
    BACKGROUND: The yolk of insect eggs is a cellular domain specialized in the storage of reserve components for embryo development. The reserve macromolecules are stored in different organelles and their interactions with the embryo cells are mostly unknown. Acidocalcisomes are lysosome-related organelles characterized by their acidic nature, high electron density and large content of polyphosphate bound to several cations. In this work, we report the presence of acidocalcisome-like organelles in eggs of the insect vector Rhodnius prolixus. METHODOLOGY/PRINCIPAL FINDINGS: Characterization of the elemental composition of electron-dense vesicles by electron probe X-ray microanalysis revealed a composition similar to that previously described for acidocalcisomes. Following subcellular fractionation experiments, fractions enriched in acidocalcisomes were obtained and characterized. Immunofluorescence showed that polyphosphate polymers and the vacuolar proton translocating pyrophosphatase (V-H(+)-PPase, considered as a marker for acidocalcisomes) are found in the same vesicles and that these organelles are mainly localized in the egg cortex. Polyphosphate quantification showed that acidocalcisomes contain a significant amount of polyphosphate detected at day-0 eggs. Elemental analyses of the egg fractions showed that 24.5±0.65% of the egg calcium are also stored in such organelles. During embryogenesis, incubation of acidocalcisomes with acridine orange showed that these organelles are acidified at day-3 (coinciding with the period of yolk mobilization) and polyphosphate quantification showed that the levels of polyphosphate tend to decrease during early embryogenesis, being approximately 30% lower at day-3 compared to day-0 eggs. CONCLUSIONS: We found that acidocalcisomes are present in the eggs and are the main storage compartments of polyphosphate and calcium in the egg yolk. As such components have been shown to be involved in a series of dynamic events that may control embryo growth, results reveal the potential involvement of a novel organelle in the storage and mobilization of inorganic elements to the embryo cells

    Composições microbicidas, processos para sua obtenção, construções gênicas, processos para o controle de pestes

    Get PDF
    Em 17/03/2016: Anuidade de pedido de patente de invenção no prazo ordinárioDepositadaA presente invenção é relacionada a fatores antimicrobianos extraídos de envoltórios protetores (cascas) de ovos de insetos. A maioria destes fatores compreende peptídeos e/ou proteínas obtidas de tais involuntários e/ou de seus respectivos genes codificantes, em construções gênicas artificiais. São descritas composições microbicidas e processos para sua obtenção, bem como construções gênicas e processos para o controle de pestes

    The roles of haemolymphatic lipoproteins in the oogenesis of Rhodnius prolixus

    No full text
    The fates of purified 32P-vitellin and 32P-lipophorin were followed in vitellogenic females of Rhodnius prolixus. While the radioactivity from 32P-vitellin 6 hours after injection was found almost exclusively in the ovary, the radioactivity from injected 32P-lipophorin was found distributed among several organs. In the ovary, the radioactivity from 32P-vitellin was associated with the contents of the yolk granules. 32P-lipophorin delivered a great amount of radioactive phospholipids to the ovary with no accumulation of its protein moiety, as observed after its iodination with 131I. The delivery of phospholipids was inhibited at 0ºC and by the metabolic inhibitors, sodium azide and sodium fluoride. Comparison of the radioactivity incorporation from 32P-lipophorin with that of 14C-inulin suggests that the 32P-phospholipids from lipophorin are not taken up by fluid phase endocytosis. The data presented here are compatible with the concept of lipophorin as a carrier of lipids in insects and provide evidence that lipophorin transports phospholipids as shown previously for other classes of lipids. The utilization by the oocytes of the phospholipids transported by lipophorin is discussed

    Silencing of RpATG6 impaired the yolk accumulation and the biogenesis of the yolk organelles in the insect vector R. prolixus.

    No full text
    In oviparous animals, the egg yolk is synthesized by the mother in a major metabolic challenge, where the different yolk components are secreted to the hemolymph and delivered to the oocytes mostly by endocytosis. The yolk macromolecules are then stored in a wide range of endocytic-originated vesicles which are collectively referred to as yolk organelles and occupy most of the mature oocytes cytoplasm. After fertilization, the contents of these organelles are degraded in a regulated manner to supply the embryo cells with fundamental molecules for de novo synthesis. Yolk accumulation and its regulated degradation are therefore crucial for successful development, however, most of the molecular mechanisms involved in the biogenesis, sorting and degradation of targeted yolk organelles are still poorly understood. ATG6 is part of two PI3P-kinase complexes that can regulate the recruitment of the endocytic or the autophagy machineries. Here, we investigate the role of RpATG6 in the endocytosis of the yolk macromolecules and in the biogenesis of the yolk organelles in the insect vector Rhodnius prolixus. We found that vitellogenic females express high levels of RpATG6 in the ovaries, when compared to the levels detected in the midgut and fat body. RNAi silencing of RpATG6 resulted in yolk proteins accumulated in the vitellogenic hemolymph, as a consequence of poor uptake by the oocytes. Accordingly, the silenced oocytes are unviable, white (contrasting to the control pink oocytes), smaller (62% of the control oocyte volume) and accumulate only 40% of the yolk proteins, 80% of the TAG and 50% of the polymer polyphosphate quantified in control oocytes. The cortex of silenced oocytes present atypical smaller vesicles indicating that the yolk organelles were not properly formed and/or sorted, which was supported by the lack of endocytic vesicles near the plasma membrane of silenced oocytes as seen by TEM. Altogether, we found that RpATG6 is central for the mechanisms of yolk accumulation, emerging as an important target for further investigations on oogenesis and, therefore, reproduction of this vector

    Vacina contra carrapatos

    No full text
    Masuda, AoiLogullo, CarlosMasuda, HatisaburoVaz Junior, Itabajara da SilvaGonzales, Joao CarlosSorgine, Marcos Henrique FerreiraOliveira, Pedro Lagerblad deUniversidade Federal do Rio Grande do SulUniversidade Federal do Rio de JaneiroVeterináriaCiências BiológicasConcedid

    Oogenesis and egg development in triatomines: a biochemical approach

    No full text
    In triatomines, as well as in other insects, accumulation of yolk is a process in which an extra-ovarian tissue, the fat body, produces yolk proteins that are packed in the egg. The main protein, synthesized by the fat body, which is accumulated inside the oocyte, is vitellogenin. This process is also known as vitellogenesis. There are growing evidences in triatomines that besides fat body the ovary also produces yolk proteins. The way these yolk proteins enter the oocyte will be discussed. Yolk is a complex material composed of proteins, lipids, carbohydrates and other minor components which are packed inside the oocyte in an organized manner. Fertilization triggers embryogenesis, a process where an embryo will develop. During embryogenesis the yolk will be used for the construction of a new individual, the first instar nymph. The challenge for the next decade is to understand how and where these egg proteins are used up together with their non-protein components, in pace with the genetic program of the embryo, which enables cell differentiation (early phase of embryogenesis) and embryo differentiation (late phase) inside the egg.<br>Em triatomíneos, assim como em outros insetos, o acúmulo de vitelo é um processo no qual um tecido extraovariano, o corpo gorduroso, produz proteínas que são empacotadas no interior de um ovo. A principal proteína, sintetizada pelo corpo gorduroso, que é acumulada no interior de um ovócito, é a vitelogenina. Este processo é também conhecido por vitelogênese. Existem crescentes evidências em triatomíneos, que além do corpo gorduroso, o ovário também produz proteínas de vitelo. A forma como estas proteínas de vitelo entram nos ovócitos será aqui comentada. O vitelo é um material complexo composto por proteínas, lipídeos, carboidratos e outros compostos minoritários que são empacotados de uma maneira organizada no interior dos ovócitos. A fertilização dispara a embriogênese, um processo que culmina com o desenvolvimento do embrião. Durante a embriogênese o vitelo será utilizado para a construção de um novo indivíduo, a ninfa de primeiro estádio. O desafio para a próxima década é entender onde e como estas proteínas de vitelo são utilizadas junto com os seus componentes não protéicos, em compasso com o programa genético do embrião, que comanda a diferenciação celular (fase inicial da embriogênese) e diferenciação do embrião (fase final da embriogênese) no interior do ovo

    Silencing of RpATG6 impaired the yolk accumulation and the biogenesis of the yolk organelles in the insect vector <i>R</i>. <i>prolixus</i>

    No full text
    <div><p>In oviparous animals, the egg yolk is synthesized by the mother in a major metabolic challenge, where the different yolk components are secreted to the hemolymph and delivered to the oocytes mostly by endocytosis. The yolk macromolecules are then stored in a wide range of endocytic-originated vesicles which are collectively referred to as yolk organelles and occupy most of the mature oocytes cytoplasm. After fertilization, the contents of these organelles are degraded in a regulated manner to supply the embryo cells with fundamental molecules for <i>de novo</i> synthesis. Yolk accumulation and its regulated degradation are therefore crucial for successful development, however, most of the molecular mechanisms involved in the biogenesis, sorting and degradation of targeted yolk organelles are still poorly understood. ATG6 is part of two PI3P-kinase complexes that can regulate the recruitment of the endocytic or the autophagy machineries. Here, we investigate the role of RpATG6 in the endocytosis of the yolk macromolecules and in the biogenesis of the yolk organelles in the insect vector <i>Rhodnius prolixus</i>. We found that vitellogenic females express high levels of RpATG6 in the ovaries, when compared to the levels detected in the midgut and fat body. RNAi silencing of RpATG6 resulted in yolk proteins accumulated in the vitellogenic hemolymph, as a consequence of poor uptake by the oocytes. Accordingly, the silenced oocytes are unviable, white (contrasting to the control pink oocytes), smaller (62% of the control oocyte volume) and accumulate only 40% of the yolk proteins, 80% of the TAG and 50% of the polymer polyphosphate quantified in control oocytes. The cortex of silenced oocytes present atypical smaller vesicles indicating that the yolk organelles were not properly formed and/or sorted, which was supported by the lack of endocytic vesicles near the plasma membrane of silenced oocytes as seen by TEM. Altogether, we found that RpATG6 is central for the mechanisms of yolk accumulation, emerging as an important target for further investigations on oogenesis and, therefore, reproduction of this vector.</p></div

    Silencing of RpATG6 increases oviposition but decreases embryo viability.

    No full text
    <p>The oviposition and hatching were monitored after the blood meal. <b>A.</b> Number of eggs laid per female over 4 weeks. Graph shows mean ± SEM (n = 4). <b>B.</b> Total of eggs laid by silenced and control females. Graph shows mean ± SEM (n = 25). **p<0.01, t-Test. <b>C.</b> Hatching rates after silencing of RpATG6. Graph shows mean ± SEM (n = 3). ***p<0.001, t-Test. <b>D.</b> Phenotypic distribution observed after knockdown of RpATG6. Percentage (%) of hatching per phenotype is also showed. <b>E.</b> Representative image of the phenotypes observed in the eggs. (N), normal (control) eggs; (C), collapsed eggs, (W), white eggs.</p
    corecore