779 research outputs found

    The role of iron in Mycobacterium smegmatis biofilm formation: The exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth

    Get PDF
    Many species of mycobacteria form structured biofilm communities at liquid-air interfaces and on solid surfaces. Full development of Mycobacterium smegmatis biofilms requires addition of supplemental iron above 1 μM ferrous sulphate, although addition of iron is not needed for planktonic growth. Microarray analysis of the M. smegmatis transcriptome shows that iron-responsive genes - especially those involved in siderophore synthesis and iron uptake - are strongly induced during biofilm formation reflecting a response to iron deprivation, even when 2 μM iron is present. The acquisition of iron under these conditions is specifically dependent on the exochelin synthesis and uptake pathways, and the strong defect of an iron-exochelin uptake mutant suggests a regulatory role of iron in the transition to biofilm growth. In contrast, although the expression of mycobactin and iron ABC transport operons is highly upregulated during biofilm formation, mutants in these systems form normal biofilms in low-iron (2 μM) conditions. A close correlation between iron availability and matrix-associated fatty acids implies a possible metabolic role in the late stages of biofilm maturation, in addition to the early regulatory role. M. smegmatis surface motility is similarly dependent on iron availability, requiring both supplemental iron and the exochelin pathway to acquire it. © 2007 The Authors

    A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells

    Get PDF
    The predominant morphotype of mycobacteriophage virions has a DNA-containing capsid attached to a long flexible non-contractile tail, features characteristic of the Siphoviridae. Within these phage genomes the tape measure protein (tmp) gene can be readily identified due to the well-established relationship between the length of the gene and the length of the phage tail - because these phages typically have long tails, the tmp gene is usually the largest gene in the genome. Many of these mycobacteriophage Tmp's contain small motifs with sequence similarity to host proteins. One of these motifs (motif 1) corresponds to the Rpf proteins that have lysozyme activity and function to stimulate growth of dormant bacteria, while the others (motifs 2 and 3) are related to proteins of unknown function, although some of the related proteins of the host are predicted to be involved in cell wall catabolism. We show here that motif 3-containing proteins have peptidoglycan-hydrolysing activity and that while this activity is not required for phage viability, it facilitates efficient infection and DNA injection into stationary phase cells. Tmp's of mycobacteriophages may thus have acquired these motifs in order to avoid a selective disadvantage that results from changes in peptidoglycan in non-growing cells. © 2006 The Authors

    Mycobacteriophages: Windows into Tuberculosis

    Get PDF

    Investigation of cell cycle genes in Escherichia coli

    Get PDF

    Complete Genome Sequences of Lactobacillus Phages J-1 and PL-1

    Get PDF
    Lactobacillus phages J-1 and PL-1 were isolated during the 1960s from abnormal fermentations of Yakult. The genomes are almost identical, but PL-1 has a deletion in the genetic switch region and also differs in a gene coding for a putative tail protein.Fil: Dieterle, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. University of Pittsburgh; Estados UnidosFil: Jacobs Sera, Deborah. University of Pittsburgh; Estados UnidosFil: Russel, Daniel. University of Pittsburgh; Estados UnidosFil: Hatfull, Graham. University of Pittsburgh; Estados UnidosFil: Piuri, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Attachment Site Selection and Identity in Bxb1 Serine Integrase-Mediated Site-Specific Recombination

    Get PDF
    Phage-encoded serine integrases mediate directionally regulated site-specific recombination between short attP and attB DNA sites without host factor requirements. These features make them attractive for genome engineering and synthetic genetics, although the basis for DNA site selection is poorly understood. Here we show that attP selection is determined through multiple proofreading steps that reject non-attP substrates, and that discrimination of attP and attB involves two critical site features: the outermost 5-6 base pairs of attP that are required for Int binding and recombination but antagonize attB function, and the "discriminators" at positions -15/+15 that determine attB identity but also antagonize attP function. Thus, although the attachment sites differ in length and sequence, only two base changes are needed to convert attP to attL, and just two more from attL to attB. The opposing effect of site identifiers ensures that site schizophrenia with dual identities does not occur. © 2013 Singh et al

    Mycobacteriophage Endolysins: Diverse and Modular Enzymes with Multiple Catalytic Activities

    Get PDF
    The mycobacterial cell wall presents significant challenges to mycobacteriophages – viruses that infect mycobacterial hosts – because of its unusual structure containing a mycolic acid-rich mycobacterial outer membrane attached to an arabinogalactan layer that is in turn linked to the peptidoglycan. Although little is known about how mycobacteriophages circumvent these barriers during the process of infection, destroying it for lysis at the end of their lytic cycles requires an unusual set of functions. These include Lysin B proteins that cleave the linkage of mycolic acids to the arabinogalactan layer, chaperones required for endolysin delivery to peptidoglycan, holins that regulate lysis timing, and the endolysins (Lysin As) that hydrolyze peptidoglycan. Because mycobacterial peptidoglycan contains atypical features including 3→3 interpeptide linkages, it is not surprising that the mycobacteriophage endolysins also have non-canonical features. We present here a bioinformatic dissection of these lysins and show that they are highly diverse and extensively modular, with an impressive number of domain organizations. Most contain three domains with a novel N-terminal predicted peptidase, a centrally located amidase, muramidase, or transglycosylase, and a C-terminal putative cell wall binding domain

    Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria

    Get PDF
    Mycobacteriophage Tweety is a newly isolated phage of Mycobacterium smegmatis. It has a viral morphology with an isometric head and a long flexible tail, and forms turbid plaques from which stable lysogens can be isolated. The Tweety genome is 58 692 bp in length, contains 109 protein-coding genes, and shows significant but interrupted nucleotide sequence similarity with the previously described mycobacteriophages Llij, PMC and Che8. However, overall the genome possesses mosaic architecture, with gene products being related to other mycobacteriophages such as Che9d, Omega and Corndog. A gene encoding an integrase of the tyrosine-recombinase family is located close to the centre of the genome, and a putative attP site has been identified within a short intergenic region immediately upstream of int. This Tweety attP–int cassette was used to construct a new set of integration-proficient plasmid vectors that efficiently transform both fast- and slow-growing mycobacteria through plasmid integration at a chromosomal locus containing a tRNALys gene. These vectors are maintained well in the absence of selection and are completely compatible with integration vectors derived from mycobacteriophage L5, enabling the simple construction of complex recombinants with genes integrated simultaneously at different chromosomal positions

    ‘The other RSC’: the history and legacy of the Reduced Shakespeare Company

    Get PDF
    This thesis investigates the history and legacy of the Reduced Shakespeare Company (RSC), a Californian three-man comedy troupe who have created ten stage shows to date, which encompass abridged, fast-paced versions of substantial, serious topics. My focus is on the company’s inaugural source of adaptation and the subject to which they have regularly returned throughout their 37-year existence: William Shakespeare’s plays, life and influence. The ‘other’ RSC have reached a global audience and represent a fascinating American tale of how a small-scale, open-air troupe gradually expanded into a highly successful theatre brand. I will argue that, through their blend of vaudevillian humour, pop culture references, audience involvement, metatheatrical narratives and intertextual use of Shakespeare, the RSC are central to the development of Shakespearean parody of the late twentieth and early twenty-first century. I further contend that the RSC occupy a significant locus in the contemporary performance of Shakespearean adaptation, as demonstrated by the longevity of their work and their influence on other companies. As my thesis will demonstrate, their work oscillates between sincerity and irony and is structured around a series of collisions between characters who differ both in ideology and purpose. This research encompasses an account of the company’s history from 1981 to the present day, interviews conducted with the founders and managing partners as well as close-readings of their Shakespearean texts. I explore the company’s origins at Renaissance Faires during the 1980s and examine their development through three case studies: their first play, The Complete Works of William Shakespeare (abridged) (1987), their 1994 six-part BBC radio series and their most recent work, William Shakespeare’s Long Lost First Play (abridged) (2016). My project represents the first full-length study of this internationally renowned company, whose plays have been translated worldwide and who hold the record for the longest-running comedy play in London’s West End
    corecore