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1. Introduction 

1.1 Persistence of the pathogen is the hallmark of TB pathogenesis 

Based on a randomized clinical trial conducted by British Medical Council between 1972 
and 1974, the World Health Organization (WHO) and other government agencies 
implemented a short-course multi-drug regimen for tuberculosis – a disease caused by the 
infection of Mycobacterium tuberculosis (BMC, 1972, Fox et al., 1999). The regimen is made of 
three antibiotics, isoniazid, rifampicin and pyrazinamide administered over a period of six 
months. The extended therapy is essential for sterilizing a small subpopulation of bacilli that 
presumably acquire phenotypic tolerance to antibiotics (Saltini, 2006, Jindani et al., 2003).  

Four decades later, WHO estimates that about 2 billion people in the world still remain 
asymptomatically infected with M. tuberculosis, approximately 5-10% of these visit clinics 
with symptoms of active tuberculosis, and 1.7 million die of the infection every year (Dye et 
al., 2009). Moreover, one third of the mortality in HIV-infected patient occurs due to co-
infection of M. tuberculosis, often with a very high frequency of multi-drug resistant strains 
(Harrington, 2010, Aaron et al., 2004). It is thus clear that while the existing anti-TB drug 
regimen has been able to reduce the mortality rate, it has been inadequate in reducing the 
global burden of the disease. A forward approach towards TB-control must include two 
critical capabilities: a) to predict and prevent the conversion of asymptomatic infection to 
active TB, and b) to develop a shorter and more effective therapeutic regimen for active 
disease. Accomplishing these goals have been difficult because of our limited understanding 
of the mechanisms employed by M. tuberculosis to persist against the challenges of 
competent host immune system and antibiotics.  

Although persistence mechanisms of M. tuberculosis in the host remain largely unclear, 
persistence of most, if not all, microbial species is facilitated by growth and existence in 
surface-associated and organized communities – called biofilms (Costerton et al., 1999, Fux et 
al., 2005, Hall-Stoodley et al., 2004, Blankenship & Mitchell, 2006, Branda et al., 2005). Several 
mycobacterial species including M. tuberculosis are now known to spontaneously grow in 
vitro as biofilms that harbor drug tolerant bacilli. This raises questions as to whether biofilms 
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could also be an in vivo persistence mechanism of M. tuberculosis. In this chapter we will 
discuss why it is reasonable to pay serious heed to this question, and what approaches can 
be used to test this hypothesis.  

2. A historical perspective of studies on M. tuberculosis persistence 

Early glimpses of the unique adaptability of M. tuberculosis appeared in two landmark 
studies conducted in the early 20th Century. First, Corper and Cohn observed that 24 out of 
56 in vitro cultures of human and bovine isolates contained culturable tubercle bacilli even 
after 12 years of incubation in sealed containers (Corper & Cohn, 1933). This in vitro study 
revealed the characteristic persistence of M. tuberculosis in bacteriostatic condition. 
Concurrent with this in vitro study, Opie and Aronson reported the presence of virulent M. 
tuberculosis bacilli in about 26% of lesions resected from individuals dying of causes 
unrelated to TB (Opie & Aronson, 1927). While this study demonstrated asymptomatic 
infection of M. tuberculosis, it also opened up questions as to how bacilli are able to evade the 
immune system and suppress inflammation. In subsequent follow-up studies it appeared 
that the bacilli were unexpectedly present in uninvolved tissues instead of the presumed 
primary lesions (Feldman & Baggenstoss, 1939). These in vivo studies thus raised 
speculations that a competent immune system is capable of clearing the bacilli at the 
primary lesions, but the bacilli could have used escape mechanism to survive at secondary 
sites in presumably a non-replicating state.  

The persistent nature of M. tuberculosis re-occupied the spotlight of tuberculosis research 

during the early phase of antibiotic-era around mid-20th Century. In several bacteriological 

studies on resected lesions from antibiotic treated individuals the bacilli could be 

microscopically observed even though individuals had converted to sputum negative 

(Loring & Vandiviere, 1956, Loring et al., 1955, Vandiviere et al., 1956, 1953). Interestingly, 

these bacilli in many instances were non-culturable and often associated with resolved 

lesions, thus raising a debate whether these were dead, or viable but non-culturable bacilli. 

The idea of viable but non-culturable bacilli seemed more convincing after McDermott and 

colleagues demonstrated reactivation of TB in mice upon termination of chemotherapy that 

was sufficient to reduce viability to undetectable levels (McCune et al., 1966). It was, 

however, not clear in this study as to how and where the viable bacilli persisted, but the 

correlation between non-culturable bacilli and closed hypoxic lesions (Vandiviere et al., 

1956, Haapanen et al., 1959) support the idea that closed lesions could possibly be the 

primary site of non-replicating persisters which developed in the bacteriostatic environment 

of the lesions.  

Several attempts have been made to investigate the physiology of non-replicating persisters 

using in vitro models such as hypoxic and nutritionally starved cultures. These studies 

subsequently led to identification of genetic components responsive to these conditions- 

most notably isocitrate lyase (icl) of the glyoxalate shunt pathway and the two-component 

regulatory system dosR-dosS (Park et al., 2003, Hobby & Lenert, 1957, Wayne & Hayes, 1996, 

Wayne & Lin, 1982, Saini et al., 2004). While the mutation in icl impairs the persistence of 

bacilli in a mice model (McKinney et al., 2000), the phenotype of dosR-dosS mutants in 

animal models have yielded conflicting results (Rustad et al., 2008, Parish et al., 2003, 

Malhotra et al., 2004).  
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3. Changing paradigms of M. tuberculosis persistence 

Despite the demonstration of a non-replicative and physiologically tolerant state of M. 

tuberculosis in vitro as well as the presence of hypoxic environment in granulomas (Via et al., 

2008), the hypothesis that the persisters in latent infection and chemotherapy are exclusively 

the non-replicating subpopulation residing in the bacteriostatic condition of closed lesions 

remains untested (Gomez & McKinney, 2004, Parrish et al., 1998). In contrast, the notion of a 

non-replicative state of persisters during latency is strongly challenged by two interesting 

studies published recently. Using an unstable plasmid as a reporter, Sherman and 

colleagues found that M. tuberculosis bacilli actively replicate during the chronic phase of 

infection in a mouse model – a phase when neither the host develops any symptoms of 

disease nor the number of live bacteria changes (Gill et al., 2009). Recently, Fortune and 

colleagues determined that mutations in M. tuberculosis populations accumulate at the same 

rate in latent and active infections of non-human primates, and both were similar to a 

logarithmically growing in vitro culture, implying active DNA replication and thus cell 

division of the pathogen in latent infection (Ford et al.).  

The replicative state of the bacilli in asymptomatic infection of animal models reflects a 

dynamic host-pathogen interface. This interestingly is fully consistent with an emerging 

picture of a spectrum of disease status- in terms of bacterial load, inflammation and lesion 

morphologies – as against the dogmatic view of a bimodal existence of infection in either 

latent or active form (DB et al., 2009, Rhoades et al., 2005, Barry et al., 2009). Interestingly, 

comparative studies of latent and active TB not only fail to establish a clear immunological 

distinction but also reveal highly heterogeneous lesion morphologies reflecting localized 

and highly diverse host pathogen interactions within an infected organ irrespective of the 

clinical symptoms (Barry et al., 2009). It is thus reasonably evident that in an asymptomatic 

infection M. tuberculosis could persist in diverse physiological states – from non-replicative 

to fully replicative states – each with distinct host-pathogen interactions. Furthermore, 

persistence of actively growing bacilli in asymptomatic infection could conceivably occur 

through delicately balanced host-pathogen interaction, which keeps the inflammation below 

the symptomatic threshold, but has the greatest chance of tipping the balance to cause the 

active disease.  

Mechanisms of persistence of M. tuberculosis during chemotherapy, like latency, also 

remains unclear, but data from clinical trials indicate a strong positive correlation between 

bacterial burden and duration of chemotherapy [reviewed in (Connolly et al., 2007)]. 

Consistent with these data, the Center for Disease Control of the United States recommends 

an extension of chemotherapy from six to nine months in case of patients with cavitary TB 

(CDC, 2003). Besides the total burden, the most intriguing aspect of long-term 

chemotherapy in TB is that the clearance of the pathogen follows a biphasic pattern as 

clearly demonstrated by Mitchison and colleagues (Jindani et al., 2003) (Fig. 1). While > 95% 

of the population could be cleared in the first few days of the beginning of treatment, the 

remaining fraction required a prolonged exposure (Jindani et al., 2003).  

In summary, the persistence of M. tuberculosis in a chronic infection and chemotherapy are 
likely to be facilitated by multiple mechanisms including the adaptive changes in the bacilli 
in response to dynamic microenvironments during colonization and active growth. These 
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changes could either be in surface structure or physiology that lead to decreased antibiotic 
permeability, as well as controlled host-pathogen interaction and inflammation. Therefore, 
addressing questions such as where and how M. tuberculosis colonizes during chronic 
infection and gaining insight into the growth phase-dependent adaptive changes are critical 
for a comprehensive understanding of its persistence.  

 

Fig. 1. Representation of the data published by Jindani et al. (4), showing the pattern of  
M. tuberculosis clearance in patients treated with isoniazid and rifampicin. 

4. Chronic infections, bacterial persistence and biofilms 

The hallmark of a successful pathogen is to colonize the host for a long period of time 
against the challenges of host immune system, and persist against the antibiotics pressure. 
Although numerous bacterial and fungal pathogens including M. tuberculosis easily qualify 
for this category, the question as to how they establish such infections remains unanswered 
for most species.  

However, a large and ever-growing body of evidence provide a compelling argument that 
the persistence of most, if not all, microbial species in general is achieved through their 
ability to grow in self-organized, surface associated, sessile communities called biofilms 
(Costerton et al., 1999, Fux et al., 2005, Hall-Stoodley et al., 2004, Kolter & Greenberg, 2006, 
Marrie et al., 1982, McNeill & Hamilton, 2003, Donlan & Costerton, 2002). Moreover, several 
long-term colonizers in humans like P. aeruginosa, S. aureus, S. epidermis, C. albicans, H. 
influenzae and E. coli grow as extracellular or intracellular biofilms inside the cell, on the 
tissues, or on medical implantation devices (Blankenship & Mitchell, 2006, Anderson et al., 
2004, Davies, 2002, Fey & Olson, Foreman & Wormald, Post, 2001). Furthermore, evidence of 
direct association between chronic persistence and biofilm formation is found in S. epidermis 
through mutation in a single gene that disrupted both phenotypes (Vuong et al., 2004).  

The mechanisms of biofilm formation are primarily investigated in genetically tractable 
species like B. subtilis, Vibrio spp. and Pseudomonas spp. (Kolter & Losick, 1998, O'Toole et al., 
1999, Hall-Stoodley & Stoodley, 2002). Despite the distinction in their specific genetic 
requirements and structural constituents, biofilms of each species are formed through 
common developmental mechanisms that involve surface attachment, cell-to-cell 
communication, and synthesis of extracellular matrix (ECM), which encapsulates the 
resident cells (Kolter & Losick, 1998, Hall-Stoodley & Stoodley, 2002, Hogan & Kolter, 2002, 
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Chu et al., 2006, Blankenship & Mitchell, 2006, Branda et al., 2005, Danese et al., 2000, 
Higgins et al., 2007). The constituent microbes in biofilms must reside in, and therefore adapt 
to, highly complex, heterogeneous and dynamic microenvironments that conceivably could 
foster phenotypic diversity in the population, a scenario unlikely to be encountered by 
single-cell planktonic counterparts (Kolter & Losick, 1998). Overall, the encapsulated growth 
along with phenotypic diversity in the population can be argued as the primary contributors 
to the extraordinary persistence of biofilms against environmental challenges including 
antibiotics (Mah & O'Toole, 2001).  

The changes in intercellular interactions, cellular physiology and structural compositions 
associated with development of pathogenic biofilms can also have a profound effect on the 
outcome of both acute and chronic infections. Accumulation of a set of two quorum sensing 
signals, CAI-1 and AI-2, in high density cultures of Vibrio cholerae negatively co-regulate 
genes for ECM synthesis as well as virulence (Higgins et al., 2007). This suggests that 
formation of biofilms and creation of suitable microenvironments in the host through 
virulence factors are intricately related steps that constitute the colonization phase of an 
acute infection of V. cholerae, and their concomitant down-regulation at high density could 
possibly be an exit strategy of the pathogen. However, in a chronic infection of S. aureus in a 
mouse model Shirtliff and colleagues found that early and late stages of biofilms elicit 
distinct host responses (Prabhakara et al., 2011). While early stage biofilms triggered a Th1-
mediated acute inflammatory response- possibly to create conducive tissue 
microenvironment for colonization – the old biofilms induced Th2-mediated humoral 
response that was ineffective on the pathogen – perhaps an immune evasive mechanism 
that facilitates the chronic survival (Prabhakara et al., 2011).  

Taken together, biofilms represent a natural but highly complex life-style of most microbial 
species, promote persistence of constituent cells in robust structures, and provide unique 
microenvironments that facilitate extensive phenotypic diversity.  

5. Could M. tuberculosis infections persist as biofilms? 

While the long-term persistence of M. tuberculosis against the host immune system and 
antibiotics has striking similarity with the chronic infections of biofilm forming pathogens, it 
remains unclear if the tubercle bacilli form biofilms in the host. It is, however, noteworthy 
that in vitro cultures of all mycobacterial species grow in complex structures that eventually 
develop as pellicles on the liquid-air interface, unless a detergent is added as dispersal agent 
in the medium. Interestingly, such growth pattern of mycobacteria have frequently been 
noted in the literature as aggregation of cells driven by their surface hydrophobicity, and 
largely been ignored ever since Dubos and colleagues reported a method to grow dispersed 
culture of tubercle bacilli without diminishing their virulence (Dubos et al., 1946). However, 
the emerging concept of microbial persistence in biofilms have recently led several groups 
to investigate the detergent-free in vitro growth of mycobacterial species from the 
perspective of organized multicellular structures (Hall-Stoodley & Lappin-Scott, 1998, 
Carter et al., 2003). In one of the first genetic studies of surface associated growth of 
mycobacteria, Kolter and colleagues observed that an M. smemgatis mutant deficient in 
biosynthesis of acetylated glycopeptidolipid was also unable to attach and grow on an 
abiotic surface, thus demonstrating a specific genetic requirement for surface-associate 
mycobacterial growth (Recht & Kolter, 2001). Ojha et al. subsequently reported that a  
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mutation in one of the non-essential chaperone, of M. smegmatis specifically retarded the 

maturation stages of pellicle formation, observed at 4- and 5-day of incubation, without 

affecting early attachment and growth during first three days of incubation (Ojha et al., 2005). 

The mutant was also indistinguishable from its wild-type parent in planktonic growth. The 

maturation defect of the mutant was linked to defective synthesis in mycolic acids as a 

consequence of the loss of a KasA (enzyme involved in mycolic acid biosynthesis) 

interaction, which is induced in this phase of wild-type culture (Ojha et al., 2005). The 

regulated synthesis of mycolic acids was surprising because it is highly abundant in the cell 

wall, although it is consistent with the subsequent observation of induced synthesis of 

extracellular free mycolic acids during the maturation stage of the pellicles (Ojha et al., 2010). 

The free mycolic acids (FM) are released through regulated hydrolysis of mycolyl esters of 

Trehalose, Trehalose 6’,6’ dimycolate (TDM), and by cutinase-like serine esterase (Ojha et al., 

2010), although other mycolyl esters could also contribute to the FM pool through similar 

mechanism. One possible candidate could be mycolyl diacyl glycerol (MDAG), a mycolyl 

ester of glycerol, which is also found in low abundance in impaired biofilms of an lsr2 

mutant of M. smegmatis (Chen et al., 2006). The accumulation of FM is likely facilitated 

through a three-step mechanism: 1) mediated upregulation in de novo synthesis of the 

nascent mycolic acids, 2) processing of nascent mycolic acids into a subset of mycolyl esters 

through housekeeping mechanisms, and 3) hydrolysis of these mycolyl esters through 

substrate-specific esterases. The elevated levels of extracellular free mycolic acids during the 

maturation of M. smegmatis pellicles is also consistent with the obvious waxy appearance of 

the structures, and thus could likely constitute the structure component of the ECM. The 

significance of M. smegmatis growth in pellicles is further highlighted by distinct phenotypes 

of the bacilli in these structures that are absent in planktonic cell suspension. For example, 

increased intercellular transfer of genetic materials, and extraordinary tolerance to anti-TB 

drugs (Ojha et al., 2010, Nguyen et al., 2010). Most importantly, the fundamental properties 

of mycobacterial pellicles are conserved in M. tuberculosis when grown in detergent-free 

media under defined condition (Ojha et al., 2008). The pathogenic species not only has 

specific genetic requirement for forming the pellicles (Fig. 2A and B), but also produces 

large abundance of free mycolic acids in the structure, which expectedly harbor large 

numbers of drug tolerant bacilli (Ojha et al., 2008) (Fig. 3). Taken together, these in vitro 

studies strongly support the possibility that surface-associated multicellular structures of 

mycobacteria have all the characteristics of biofilms, developing through distinct growth 

phases, having specific genetic requirements, and conferring high tolerance to antibiotics. 

Despite a recent surge in understanding the multicellular structures of mycobacteria, 

multicellular structures of M. tuberculosis in the host have been difficult to define. This in 

part can be attributed to the conventional image of M. tuberculosis as an intracellular 

pathogen living in phagosome, which is too restrictive for exuberant growth of the pathogen 

in multicellular structure. However, while M. tuberculosis might be restricted to the 

phagosome in early stages of infection, at later t imes, especially when lesions contain 

liquefied caseum and when patients are highly infective, it is likely that many of the bacilli 

experience an extracellular environment. In a comprehensive histopathological study of TB 

lesions from 1,500 autopsies, Geroges Canetti documented several lesions including open 

cavities that had numerous extracellular bacilli growing in multicellular structures (Canetti, 

1955). Interestingly, in this 7-year study Canetti microscopically analyzed lesions of various  
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Fig. 2. A. Growth of M. tuberculosis biofilms on the liquid-air interface in detergent-free 
Sauton’s medium. B. Insertion of a mariner transpososn (Himar) in Rv1013 abolishes the 
formation of biofilms, although the growth of the mutant in planktonic state remains 
unaltered (68). 

 

Fig. 3. Presence of rifampicin tolerant persisters is significantly higher in biofilm populations 
of M. tuberculosis than in their planktonic counterparts, as reported by Ojha et al. (68). 

morphotypes in detail, with equal focus on both the tissue structures as well as bacterial 
growth (Canetti, 1955). The goal of the undertaking was to bridge the partition between 
immunopathology and bacteriology of tuberculosis that a student of the disease was always 
confronted with. This partition ironically continues to be a relevant issue in questions as to 
how and where bacilli persist in the both latent and active TB. In a recent attempt to locate 
the bacilli persisting after antibiotic treatment, Orme and colleagues observed the persisters 
as microcolonies in the acellular rim of granulomas (Lenaerts et al., 2007). Although it was 

www.intechopen.com



 
Understanding Tuberculosis – Deciphering the Secret Life of the Bacilli 

 

188 

not clear in their study whether these bacilli were alive or dead, these are reminiscent of the 
extracellular multicellular structures of bacilli reported in Canetti’s study.  

6. Exploring M. tuberculosis biofilms in vivo 

The in vitro studies on mycobacterial persistence in biofilms provide a compelling 

argument that the extracellular multicellular structures of M. tuberculosis in liquefied 

lesions could be primary foci of persister cells. A basic approach in such a study will 

involve three critical components: a) imaging M. tuberculosis bacilli in intact lesions, b) 

identifying molecular signatures like free mycolic acids of biofilms in multicellular 

structures of bacilli, and c) genetically correlating persistence with multicellular 

structures. Imaging bacilli in intact lesions could be a potentially challenging and 

expensive approach but is important because conventional processing of tissues with 

harsh organic chemicals used in typical histopathological protocols likely distort the 

bacillary architecture. Moreover, the modified cell wall of mycobacteria in biofilms could 

also render them undetectable by acid-fast staining. Confocal Laser Scanning Microscopy 

(CLSM) of fluorescently marked M. tuberculosis in lesions resected from an animal model 

that closely mimic human infections, like non-human primates, represents an attractive 

approach to imaging M. tuberculosis in vivo biofilms. The imaging studies could then be 

followed with detection and analysis of extracellular molecules including lipids and 

proteins that are associated with multicellular structures. Although the abundance of free 

mycolic acids in biofilms in vitro makes this an excellent candidate, the search should 

remain open, in case different surface molecules are used for cohesion of the structures in 

vivo. Finally, a systematic in vivo analysis of genetically defined mutants that fail to form 

in vitro biofilms could be a powerful strategy for gaining mechanistic insights and 

identifying drug targets that can dismantle the biofilm structure. It is noteworthy that 

transposon insertion in pks16 (Rv1013) and helY can impair the development of M. 

tuberculosis, although it is unclear whether the effects of genes products are directly on 

structural formation or indirectly on adaption of resident bacteria within the structure 

(Ojha et al., 2008). Mutants in the former category could be especially useful for in vivo 

studies avoiding indirect effects of gene products resulting from changes in the 

morphologies of the structures.  

7. Conclusions 

Although a short and effective treatment of M. tuberculosis infection remains a big challenge 

to mankind, a solution is unlikely to appear without mechanistic insights into the persistent 

nature of the pathogen. At the origin of such studies lies a growth model that would reflect 

the spontaneous behavior of the pathogen. Use of detergents in the process of growing 

dispersed in vitro cultures has arguably misrepresented the physical existence of M. 

tuberculosis in its natural context. In the absence of detergent, the pathogen forms drug 

tolerant multicellular biofilms, and the complex structures of biofilms undoubtedly hold a 

treasure of information about the mechanisms that shape their behavior. It is time we 

focused on these observations to develop new strategies to combat Man’s deadliest 

microbial enemy – M. tuberculosis. 
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