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ABSTRACT 

A new gene has been identified and designated ftsQ. 	This 

gene maps in the cluster of cell division genes at 2 minutes on the 

E. coli K12 genetic map, adjacent and anticlockwise to ftsA. 	It 
Os 	~1 	 ,na 

appears that 	ftsA, there 	a periodic requirement for the 

ftsQ gene product in the cell cycle. 	The cloning of ftsQ and 

ftsA on a 2.2kb Eco Ri restriction fragment, and the construction 

of deletion derivations, maps ftsQ within a 1.0kb Eco Ri - Pvu II 

fragment. 

The ftsZ promoter also lies within the 2.2kb Eco RI fragment, 

and this has been identified by transcriptional fusion to the galK 

gene. 	There are other active promoters on this fragment, but these 

have not yet been precisely located. 

Determination of the DNA sequence of the 2.2kb Eco RI is not 

yet complete, but three 'islands' of sequence data have been obtained 

around the Barn Hi, Bgl II and Hind III sites. 	The sequence around the 

Barn HI site may contain the initiation codon and ribosome binding site 

for the ftsQ gene, but only part of the RNA polymerase binding 

sequence. 	ftsQ gene product has not yet been identified. 
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CHAPTER 1 

Introduction 

Bacterial cell division has been the subject of intensive 

study for many years. 	These studies have revealed some important aspects 

of cell division although little is known about this process at the 

molecular level. 	The recent technological advances in molecular 

biology and genetic engineering provide the opportunity to improve our 

knowledge of all cellular processes at the molecular level. 	E. coli 

has been characterised very well physiologically, biochemically and 

genetically, making it an ideal organism for studying fundamental processes 

such as cell division. In this chapter I will discuss some important 

aspects of cell division that are relevant to this project. 

1.1 	DNA replication and the timing of cell division 

E. coli contains a circular genome of double stranded DNA, 

about 1200um in length (Cairns, 1963). 	DNA replication is initiated at 

a point 88 minutes on the genetic map (Bachmann and Brooks Low, 1980) 

and a pair of replication forks move away from each other until they meet 

at a terminus at 32 minutes (Masters and Broda, 1971; Bird, Louarn, 

Martuscelli and Caro, 1972; Fayet and Louarn, 1978; Louarn, Patte 

and Louarn, 1979). 	This takes about 40 minutes and is called the C 

period (Cooper and Helmstetter, 1968). 	This period is constant at 

different growth rates, except when DNA precursors or energy requirements 

are in limited supply, as in very slow growth rates (Cooper and Helmstetter, 

1968). 	There is a second constant, the 0 period which is the time between 

completion of a round of replication and cell separation. 	This is about 
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20 minutes (Cooper and Helmstetter, 1968). 	Initiation of DNA replication 

therefore occurs 60 minutes (C + D) before cell division, and cells 

growing with a doubling time of less than 60 minutes initiate rounds of 

replication in the previous cycle (Donachie, 1968). 	Donachie (1968) showed 

that the initiation of DNA replication correlated strongly with the 

mass Mi (initiation mass) which was constant and independent of C, 0 and 

I (growth rate). 

In their 'Unit Cell Concept', Donachie and Begg (1970) observed 

that cells of E. coli growing at a doubling rate of 60-70 minutes divide 

when they are 3.4um long to produce two daughter cells, each 1.7um long. 

They suggested that 1.7um is the minimum length of E. coli cells, and 

that the mass of such a unit cell must be equal to the initiation mass 

Mi. 	However, cell volume and cell length vary with growth rate according 

to the equations: 

- 	- 	

= 	and C = 
	2 (R/3) 

where V and L are the mean cell volumes and lengths respectively and 

R is the growth rate (Donachie, 1981), so that cells growing with a 

doubling time of less than 60 minutes will behave as a group of independent 

unit cells, and divide 60 minutes after each doubling in number of unit 

cell equivalents. 	Donachie, Begg and Vicente (1976) observed that 

when cells reach a certain critical length, the rate of elongation doubles 

(provided the growth rate is unaltered) and 20 minutes later the cell 

divides. 	This critical length was found to be twice that of the 

minimum cell length (i.e. that of a unit cell), and it was suggested that 

this may be a trigger for cell division (Donachie, Begg and Vicente, 1976). 

There are two types of model to explain the coupling of cell 

division to DNA replication. 	Witkin (1967) suggested the existence of 
- 	 .ji I 	 I 

* 	 U 	 thm 
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a division inhibitor which prevents untimely division and is induced 

when DNA replication in interrupted. 	Recent evidence to support this 

model will be discussed later. 	Other models suggest that DNA 

replication or termination of DNA replication triggers the synthesis of 

a product which is essential for division to occur (Clark, 1968). 

Jones and Donachie (1973) observed there to be a brief requirement for 

RNA and protein synthesis between termination of chromosome rounds and 

cell division,and termed this 'termination protein synthesis". 	It is 

not known whether a few specific proteins are required to be synthesised, 

or whether there is a general requirement for protein synthesis, but this 

does support the hypothesis of Clark (1968) for a division trigger. 

Inouye (1971) showed however, that DNA replication is not an absolute 

requirement for cell division, and the introduction of a recA mutation 

uncouplesDNA replication and division so that even in the absence of DNA 

replication, cells divided to form DNA-less but normal sized cells. 

Pierucci and Helmstetter (1969) found that a 40 minute period 

of protein synthesis is required before division, even when DNAhas been 

previously completed. 	This is a fixed period of protein synthesis 

rather than a particular amount of protein synthesis. 	There are therefore 

three clock-like processes that lead up to cell division, the C period, 

the D period and a 40 minute period of protein synthesis. 	These processes 

are summarised in Fig. 1.1. 

1.2 	Genetics of cell division 

Table 1.1 shows a list of genes that are involved more or less 

specifically in cell division. 	Genes involved in initiation and 

elongation of DNA replication also affect cell division because of the 



Fig. I.I. 	Model of the cell cycle in E. coli 

Cell mass doubles every T minutes, and this initiates two processes, DNA 

replication (1 DNA)and synthesis of division proteins 
1DIv• 	

This 

protein synthesis is completed after 40 minutes and initiates a sequence of 

events (IA) that do not involve RNA, or DNA or protein synthesis. 	Termination 

of chromosome replication (T 
DNA) indi*es synthesis of termination protein (TI') 

which interacts with the division proteins at stage P 
DIV' 

 a septum is formed and 

at T 
DIV 

 the cells divide. 	(Adapted from Jones and Donachie, 1973). 
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coupling of these processes but will not be discussed further, as 

their primary role is not in cell division. 	As cell division is essen- 

tial for cell survival (at least on agar plates) most of the mutants 

in genes in Table 1.1 are conditionti lethals (usually temperature 

sensitive). 	Several of the genes (ion, recA, lexA, sulA and suiB) are 

involved in the SOS system and their relationship to division will be 

discussed in the next section. 

The isolation of cell division mutants has had several uses: 

a gene is identified that plays a role in division, 

physiological analyses, using cell number as an assay for division in 

a mutant strain, may indicate what this role in division is, and when 

in the cell cycle the gene product is required, 

biochemical assays of mutant strains at permissive and non-permissive 

temperature may lead to correlation between the temperature sensitive 

lesion and loss of a known enzyme activity, 

amber mutants may be used to identify gene products, 

mutants may be used for cloning regions of the bacterial chromosome. 

The cell division genes in Table 1.1 have been mapped to many 

loci on the genetic map, and it is probable that some cell division 

genes have not yet been identified. 	Several workers have isolated 

mutants that map in genes around the 2 minute region of the genetic map, 

clockwise to leu (Hirota, Ryter and Jacob, 1968 	Van de Putte, 

van Dillewijn and Rorsch, 1964; Reeve and Clark, 1972; Normark, 1970; 

Allen et al., 1974; Donachie et al., 1979; Begg, Hatfull and Donachie 1981), 

and through the use of x transducing phage, the organisation of these 

genes is better understood than any other cell division genes. 	Several 



Table l.J 	Genetic loci of genes involved in cell division in E. coli 

Genetic locus Map Position 	(mins) Phenotypic Trait of Mutants 

envA 2 Chain formation 

ftsA 2 Multinucleate filaments at restrictive 
temperature 

ftsB 32-34 Multinucleate cells and chromosomeless cells 
at restrictive temperature 

ftsC 4-9 Multinucleate cells and chromosomeless cells 
at restrictive temperature 

ftsD 86 Multinucleate filaments at restrictive 
temperature 

ftsE 73 Multinucleate filaments at restrictive 
temperature 

ftsF 82 Multinucleate filaments at restrictive 
temperature 

ftsG 29-30 Multinicleate filaments at restrictive 
temperature 

ftsH (ASH124) 89 Multinucleate filaments at restrictive 
temperature 

ftsH (y-16) 69 Multinucleate filaments at restrictive 
temperature 

ftsQ 2 Multinucleate filaments at restrictive 
temperature 

ftsZ 2 Multinucleate filaments at restrictive 
temperature 

fil 	ts 88 Multinucleate filaments at restrictive 
temperature 

Reference 

Normark (1970) 

Ricard and Hirota (1973 
Lutkenhaus and Donachie (1979) 

Ricard and Hirota (1970) 

Richard and Hirota (1973) 

Richard and Hirota (1973) 

Richard and Hirota (1973) 

Richard and Hirota (1973) 

Holland and Darby (1976) 

Santos and de Almeida (1975) 

Begg, Hatfull and Donachie (1980) 

Lutkenhaus, Wolf-Watz and 
Donachie (1980) 

Stone (1973) 



Table lJ continued 

Genetic locus 	Map Position (mins) 	 Phenotypic Trait of Mutants 

min A 	 10 	 min A, min B double mutants misplace 

min B 	 29-30 	 septa forming small chromosomeless cells 

Ion (capR) 	 10 	 Radiation sensitive 

sep (fts I, pbp B) 	2 	 Multinucleate filaments at restrictive 
temperature 

rec A 	 58 	 Continued cell division in absence of DNA 
replication 

lex A 	 90 	 Continued cell division in absence of DNA 
replication 

sul A (sfi A) 22 Suppressor of ion 

sul B (sf1 B) 2 Suppressor of ion 

ts20 	 1 	 Multinucleate filaments at restrictive 
temperature 

ts52 	 35 	 Multinucleate filaments at restrictive 
temperature 

References 

Adler, Fisher, Cohen and 
Hardigree (1967) 

Teather, Collins and 
Donachie (1974) 

Donch, Green and Greenberg 
(1968) Hua and Markovitz 
(1972). 

Fletcher et al 1978 
Spratt (1977) 

Castellazzi, George and 
Buttin (1972a,b) 

Mount et al (1972) 

George, Castellazzi and 
Buttin (1975). 

George, Castellazzi and 
Buttin (1975) 

Nagai and Tamura (1972) 

Zusman et al (1972) 



5. 

genes involved in murein biosynthesis also map in this region of the 

chromosome, and the enzyme activities of some of these genes are known. 
LL 

mur E is thought to code for mesodiarninopimelic acidenzyme, mur F 

for D-alanyl-D-alanine adding enzyme, mur C for L-alanine adding enzyme 

and ddl for D-alanine 	D-alanine ligase (Lugtenberg, and van Schijndel- 

van Dam 1972, 1973, Miyakowa, Matsuzara, Matsuhashi and Sugino, 1972). 

PAT84,originally mapped as an ftsA mutant (Ricard and Hirota, 1973) but 

redefined as a separate locus ftsZ (Lutkenhaus, Wolf-Watz and Donachie, 

1980) appears to have a reduced level of D,D-carboxypeptidase at the 

restrictive temperature (Mirelman, Yashouv-Gan and Schwarz, 1976, 1977). 

envA mutants have a reduced level of N-acetylmuramyl-L-alanine amidase 

activity, and show increased permeability to several antibacterial agents 

(Wolf-Watz and Normark, 1976). 	The biochemical activity of the ftsA 

gene is not known. 	The structural organisation of these genes at 2 min- 

utes will be discussed in detail in section 1.5. 

minA minB mutants are not defective in septum formation but 

are defective in the positioning of the septa, so that these strains 

produce small DNA-less cells called minicells (Adler, Fisher, Cohen and 

Hardigree, 1967). 	The division potential (number of septa per unit 

cell equivalents) is unaltered, so that the size distribution becomes 

very heterogeneous (Teather, Collins and Donachie, 1974). 	These 

mutants are most useful for their practical applications of examining 

protein synthesis directed by phage or plasmids (Adler, Fisher, Cohen and 

Hardigree, 1967). 

Apart from some interesting observations about the map position 

of division genes (i.e. that several map in a cluster at 2 minutes), the 

physiological and biochemical studies have yielded very little information 



about the role of the genes in division. 	Vicente, Otsuji and Donachie 

(unpublished data) hoped to overcome these problems by isolating 

amber mutants in essential genes (the OV series). 	By using a 

temperature sensitive suppressor, conditional lethal amber mutants were 

isolated, which are temperature sensitive for the synthesis of the 

essential gene product, rather than temperature sensitive for the 

activity of the product as in missense mutants. 	Physiological analyses 

with such mutants can be used to determine when in the cell cycle the 

gene product is required to be synthesised, or whether the product can 

be re-used in successive cycles. 	Amber mutants can also be used very 

effectively in the identification of gene products and this is particularly 

useful when there is little biochemical information available 

(Lutkenhaus and Donachie, 1979). 

In practice, this system of isolating amber mutants has 

been limited by the suppression levels of the temperature sensitive 
ts 

suppressor that was used (Sup FAsl)  which allows only about 13% suppression 

at the permissive temperature (Smith, Barnett, Brenner and Russell, 1970). 

Nonetheless mutants have been isolated and used to identify a new gene 

mur G  (Salmond, Lutkenhaus and Donachie, 1980), and to identify the ftsA 

gene product (Lutkenhaus and Donachie 1979). 	Two amber mutants were 

isolated in ftsA (0V8 and 0V16) and used to show that ftsA may play a 

special role in cell division (Donachie et al., 1979). 	The mutant 0V16 

was synchronised by sucrose gradient centrifugation and samples shifted 

from the permissive temperature to the restrictive temperature and vice 

versa at different times during the cell cycle. 	The results indicated 

that the ftsA gene product was required to be synthesised periodically 

during a 10-15 minute period prior to division (Donachie et al., 1979). 
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It is not known whether the ftsA gene is actually periodically synthesised 

or if cells are only periodically competent to respond to its synthesis. 

Lutkenhaus, Moore, Masters and Donachie (1979) determined that the 

gross pattern of protein synthesis during the cell cycle does not 

change, even when cells reach certain critical dimensions, and therefore 

ftsA would be an atypical gene as regards its timing of synthesis, if it 

were periodically synthesised. 

Although these physiological and biochemical studies have 

been slow to yield information about the mechanism of division, progress 

has been made in two particular fields of study, the SOS system and 

its relationship to cell division, and the fine structure of the 

genes located at 2 minutes on the genetic map. 

1.3 	The SOS system and the division response 

When cells of E. coli are UV-irradiated or their DNA replication 

inter'upted in some way (introduction of DNA synthesis 	 , addition 

of mutagens, for example) a series of events takes place in the 

treated cell which have collectively been called the SOS response 

(Radman 1975). 	The obvious initial response is the induction of synthesis 

of a 40 Kilodalton protein, the product of the recA gene (Inouye and 

Pardee, 1970; Gudas and Pardee, 1976; Sedgwick, 1975) which mediates 

the induction of DNA repair mechanisms and various prophages (Roberts, 

et al., 1978), and leads to an inhibition of division. 	Induction of 

these functions does not occur in cells that are mutated in either the 

recA gene or lexA gene (Witkin, 1976). 	recA protein has been shown to 

be active as a protease, cleaving both the X repressor (Roberts et al., 

1978) and the lexA gene product (Little et al., 1980), and mutations in 
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the recA gene abolish the protease activity. 	lexA which codes for a 

24 kilodalton protein is autoregulated (Brent and Ptashne, 1980) and 

represses its own synthesis, and that of the recA protein (Mcpartland 

et al., 1980). 	Therefore recA protein itself must be among the 

induced functions, as is observed (Gudas and Mount, 1977). 	However, 

the introduction into the cell of a high copy number plasmid carrying the 

recA gene does not lead. to induction of the SOS system (McEntee, 1977),  

even though the concentration of recA protein is observed to increase, 

so there must be some other activation of the recA product for SOS induction. 

It is thought that effectors produced by DNA damage (such as oligonucleo- 

tides) are responsible for this activation. 	Mutants have been isolated 

in recA (tif) (Morand, Goze and Devoret, 1977), and lexA (tsl) (Mount, 

Walker and Kosel, 1975) which induce the SOS functions at the restrictive 

temperature without any DNA damage being required. 

If cells are given a low dose of UV-irradiation (1OJm 2), the 

SOS system is induced, and division is inhibited.. 	This is however a 

transient effect, and after about 90 minutes, division resumes and the 

filaments divide to produce normal cells. 	This resumption of division 

is dependent upon the ion (cap R) gene product (Adler and Hardigree, 1965), 

which has been identified as a 94 kilodalton protein (Schoemaker and 

Markovitz, 1981). 	The Ion product acts as a repressor of the gal operon 

and derepression in ion mutants leads to over production of colonic acid 

and mucoidy (Mackie and Wilson, 1972). 	Shineberg and Zipser (1973) 

showed that ion gene product also has a protease activity and degrades 

nonsense fragments of 	-galactosidase. 	A further effect of ion mutants 

is the decreased lysogenisation of some bacteriophages (Walker et al., 1973). 

Suppressor mutants of ion (sul) map at one of two loci, sul A, or sul B 



Fig. 1.2. 	The SOS system and the division response 

In an uninterrupted cell, lex A synthees its gene product (0) which 

acts as a repressor for its own synthesis, and the synthesis of rec A protein 

and sul A protein. 	Division continues normally. 

However, when the cell is UV-irradiated, or DNA replication inter-

upted in some way, effector molecules ( A  ) are released and activate the 

rec A protein (0) to its protease form (). 	Amongst the SOS responses, the 

rec A protein cleaves the lex A product (-a-), which leads to depression of its 

own synthesis, rec A protein and also sul A protein. sul A is therefore induced 

and this leads to an inhibition of division. 



DIVISION 

sul A 

REPRESSION 

'o rec A 

DIVISION INHIBITION 

sul A 

INDUCTION 

/ 	
o 

lex A 	 rec A 

Fig 1.2 



(Johnson, 1977) and these are identical to the map positions of sfi A 

and sfi B respectively, the suppresSors  of tif and tsl. 	These suppressor 

mutants therefore offer a link between the SOS system, and its division 

response. 

Witkin (1967) and George et al., (1975) postulated previously 

the presence of a Repair Associated Division Inhibitor (RADI ), and 

Huisman, D'Ari and George (1980) suggested that RADI may be the 

product of one of the supprdsor loci. 	Huisman and D'Ari (1981) tested 

this hypothesis by genetically fusing the control region of sul A to 

the lac Z gene in vivo using the MudAplac phage constructed by Casadaban 

and Cohen. 	The introduction of either the tsl or tif mutation into 

the fused strain resulted in induction of the sul A gene at the restricfive 

temperature as assayed by the production of p -ga1actosidase. 	The tsl 

(lex A) effect is not mediated through the rec A gene, as tsl rec A 

double mutants still induce p -galactosidase at the restrictive temperature. 

Huisman and D'Ari (1981) suggested that on UV-irradiation the following 

series of events occurs: 	Alteration to the DNA replication complex causes 

the generation of effector molecules which activate the rec A protein 

to its protease form which cleaves the lex A repressor. 	This leads to 

derepression of the sul A gene which was repressed by lex A1and thus results 

in inhibition of division. 	They also speculate that ion may act in 

its protease form to cleave the sul A product and allow division to resume, 

once DNA repair is complete (Fig. 1.2). 

The mechanism by which sul A inhibits division is not known 

although it has been proposed that it may act via the sul B gene (Darby 
Lcr 

Ph.D. thesis, 1981). 	The relevance of the SOS system to the present study 

is that sul B maps at a position approximately 2 minutes on the genetic map 
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of E. coli in the cluster of cell division genes (Johnson, 1977). 

Darby (Ph.D. Thesis) demonstrated that a 2.50 Eco Rl restriction fragment 

from this regio1 offers cells protection to low doses of UV-irradiation, 

although the sul B gene has not been precisely located. 

1.4 	The fts A - env A gene cluster 

As discussed in 1.2 there are several division specific genes 

that map at 2 minutes on the E. coli genetic map, clockwise of leu. 

They include env A, fts A and sep (pbp B). 	Several genes involved with 

the biosynthesis of peptidoglycan, mra A, mra B, mur C, mur E, mur F ddl and 

probably mur G also map in this region (Bachmann and Brooks Low 1980). 

Fletcher et al., (1978) isolated a family of X transducing phages 

that contained chromosomal DNA from the 2 minute region that complemented 

some of the temperature sensitive mutants. 	The phage were isolated 

by induction of a phage integrated in leu and testing for transduction 

of chromosomal markers, and are all defective (require a 2 helper). 	The 

largest transducing phage isolated, complements env A (the furthest marker 

from leu that was tested) and contains a 26.40 fragment of chromosomal DNA, 

sufficient to code for 22 genes assuming an average protein molecular 

weight of 40 Kilodaltons (Fletcher et al., 1978). 	This phage 

complements seven of the mutants that were tested. 	The genes were ordered 

by complementation analysis with smaller transducing phage. 	The gene 

order is shown in Fig. 1.3. 	The mutant PAT84 had previously been 

classified as an fts A mutant (Hirota, Ricard and Shapiro, 1971; Ricard 

and Hirota, 1973) but was not complemented by any of the transducing phage. 

Fletcher et al., suggested that the PAT84 mutation is either in another gene 

clockwise to env A, or is a dominant mutation in the fts A gene. 



Fig. 1.3. 	Gene order in the 2 minute region of the E. coil K12 chromosome, 

as determined by Fletcher et al., (1978) 

(not to scale). 

Fig. 1.4. 	Transducing phage x16-2. 

Diagram showing the chromosomal insert in x16-2. 	Only the central 

part of the phage is shown. 	Single lines represent the X phage arms, and the 

open box the chromosomal insert. 	Hind III ( v  ), Eco Rl ( L  ) and Barn Hi 

( 	) restriction endonclease sites in the chromosomal insert are shown, 

as well as the bacterial genes that are carried on this phage. 	Each 

segment below the phage represents 1 Kilobase. 	(Adapted from Lutkenhaus, 

Wolf-Watz and Donachie, 1980). 
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The coding capacity of the transducing phages suggested that 

there may be genes present in this region that had not been identified. 

A mutant (AX655) was complemented by these transducing phages and 

mapped in a gene between fts A and leu that had not been identified, and 

this gene was designated sep. 	Irwin et al., constructed a 'X transducing 

phage carrying an 18.2Kb Eco Ri restriction fragment that complemented 

the sep mutation, and, on infection of E. coli cells, over-produces 

penicillin binding protein 3 (PBP-3). 	Irwin et al., (1979) suggest 

that the sep gene is probably identical to pbp B (Spratt 1977) and fts I 

(Suzuki et al., 1979), based on the finding that a sept5  mutant lacked 

PBP-3 activity at 30°C and 42°C, although this has not yet been genetically 

confirmed. 

Lutkenhaus and Donachie (1978) isolated a proficient 	trans- 

ducing phage, 	16-2 (Fig. 1.4) containing a 10.50 chromosomal DNA insert 

which complemented mutations in the genes env A, Its A, ddl and mur C. 

Analysis of this phage, and derivatives of it led to the determination 

of transcriptional units and gene products in this part of the cluster 

(Lutkenhaus and Donachie, 1979; Lutkenhaus, Wolf-Watz and Donachie, 1980; 

Lutkenhaus and Wu, 1980). 

The fts A gene product was identified as a 50 Kilodalton protein 

(Lutkenhaus and Donachie, 1979) proved unequivocally by recombining the 

amber mutation from 0V16 onto the x16-2 transducing phage, and 

examining the patterns of protein synthesis in a UV-irradiated cell system. 

The phage carrying the amber mutation failed to synthesis only one protein, 

of 50 Kilodaltons and this was restored on infection of a strain carrying 

an amber suppressor. 	This is therefore the fts A gene product. 	Five 

other proteins were also observed that were coded for by the chromosomal 
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insert in X16-2 (Lutkenhaus and Wu, 1980). 

X16-2 also complements the PAT84 mutation, and complementation 

analysis with deletion derivatives of X16-2 mapped the PAT84 mutation 

not in fts A but in a new gene designated fts Z (Lutkenhaus, Wolf-Watz 

and Donachie, 1980), between fts A and env A. 

The products of known genes complemented by X16-2 were identified 

by making a comparison between the patterns of protein synthesis and 

complementation of mutants in deletion derivatives of 16-2 (Lutkenhaus 

and Wu, 1980). 	This data is shown in Fig. 1.5. 	The gene products 

were identified as env A (3lKd), fts Z (45Kd), fts A (50Kd), ddl (30Kd) and 

mur C (65Kd). 	An additional protein was synthesised from 16-2 and 	R1 of 

48Kd (Lutkenhaus and Wu, 1980). 	These phage complement a mutant from 

the OV series (0V58) which defines a new gene designated mur G (Salmond, 

Lutkenhaus and Donachie, 1980). 	The 48 Kilodalton protein is probably 

the product of this gene. 	The 0V58 mutant swells and lyses at the 

restria 	temperature so mur 0 is probably involved in peptidoglycan 

biosynthesis, as are its neighbouring genes mur E, mur F, mur C and ddl 

(Salmond, Lutkenhaus and Donachie, 1980). 

The 30 Kilodalton protein was assigned to the ddl gene as it was 

the only known gene on the 3.20 Hind III fragment that codes for 

this protein (Lutkenhaus and Wu, 1980). 	Evidence in this project 

indicates that another gene is present on this fragment so this identification 

must come into question. 

The direction of transcription and the location of promoters 

in the x16-2 transducing phage were determined by analysing protein 

synthesis from 116-2 derivatives, and also by examining the effects of PL 



Fig. 1.5. 	Deletion derivatives of x16-2 and their patterns of protein synthesis 

Open boxes represent the bacterial insert in each transducing 

phage. 	The boxes are not closed when the extent of the deletion is not known. 

Restriction endonuclease sites Hind III ( v  ), and EcoRl ( A  ) are shown in 

X16-2, but only in the deletion derivatives when they help to define the 

extent of the deletion. 

+ signs above each phage indicates the ability for that phage to synthesise the 

protein shown at the top (adapted from Lutkenhaus and Wu, 1980). 
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Fig. 1.6. 	Genetic organisation of genes carried on x16-2. 

The proteins synthesised by each gene are represented as open boxes, and 

the direction of transcription shown above these boxes. 	mur G, mur C and ddl 

may all be in one transcriptional unit, or mur G may be in a separate unit 

to mur C and ddl. 	Promotors are represented by a letter P. 	The exact 

position of the genes is uncertain, but is close to that in the diagram. 

Restriction endonuclease sites Hind III ( y  ) and Eco Rl ( 	) are also shown. 

(Adapted from Lutkenhaus and Wu (1980). 
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on the expression in Nam  hybrid immunity derivatives. 	The transcription 

units and their direction of transcription are shown in Fig. 1.6. 

The Hind III site that maps within the fts A gene lies at 

least 135 nucleotides from the C-terminal end of the fts A gene, as estimated 

by the size of hybrid proteins synthesised across the Hind III site 

(Lutkenhaus and Wu, 1980). 	It was also observed that fts Z could be 

expressed without the DNA anticlockwise to the Hind III site in fts A 

but only weakly, and synthesis of the 45Kd fts Z gene product was stimulated 

if this DNA was present. 	This pattern of synthesis correlated well with 

the complementation patterns of the relevant transducing phages. 	This 

raises the question as to whether there is an additional promotor or control 

site within the fts A gene that affects expression of the fts Z gene 

(Lutkenhaus and Wu, 1980). 

1.5 	Aims of this project 

A novel isolation procedure was devised for isolating cell 

division mutants. 	A new gene was identified which mapped adjacent to 
-H 

fts A, in the gene cluster at 2 minutes onE.co1i. 	An analysis of fts A 

and fts Q was facilitated by the cloning of the genes on a 2.20 Eco Rl 

restriction fragment. 	Several restriction sites were mapped and the 

position of the genes defined by complementation analyses with deletion 

derivatives of the 2.20 Eco Rl fragment. 	These derivatives were also used 

to attempt to identify the fts Q gene product, and the transcription 

organisation of the fts Q, A, Z genes. 	A start was made to the DNA 

sequencing of the 2.20 fragment, and some circumstantial evidence obtained 

that the fts Q promotor region may be cleaved by Eco Rl. 	It was hoped 

that these studies would reveal the mechanism of the controls of the fts 

genes and their role in cell division. 
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CHAPTER 2 

Materials and Methods 

See Table 2.1 for a list of bacterial and phage strains used 

in this project. 

2.1 	Media and Buffers 

L-broth 	 Difco Bacto Tryptone 
	

log 
Difco Bacto Yeast Extract 
	

5g 
Sodium Chloride 
	

log 
Water to 1 Litre 

pH adjusted to 7.2 

L-agar: 	 Difco Bacto Tryptone 
	

lOg 
Difco Bacto Yeast Extract 
	

5g 
Sodium Chloride 
	

log 
Difco Agar 
	

1 Sg 
Water to 1 Litre 

pH adjusted to pH 7.2 

Oxoid Nutrient Broth: 
	

Oxoid Nutrient Broth, No. 2 
	

25g 
Water to 1 Litre 

Oxoid Nutrient Agar: 

MacConkey Agar: 

Oxoid Nutrient Broth, No. 2 
Davis, N.A. Agar 
Water to 1 Litre 

Bacto-Peptone 
Difco Protease-Peptone 
Bacto Bile Salts No. 3 
Sodium Chloride 
Neutral Red 
Bacto Agar 
Bacto Crystal Violet 
Water to 1 Litre 

25g 
12.25g 

17g 
3g 

1 .5g 
5g 

O.03g 
1 5g 

0.001 g 

Sugars were added at a final concentration of 1%. 

BBL Top Agar: 	 Baltimore Biological 
Laboratories 
Trypti case 
	

log 
Sodium Chloride 
	

5g 
Difco Agar 
	

5. 5g 
Water to 1 Litre 
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Minimal Medium: 

M9 (x4): Na2  HPO4  

KH2  PO4  

NaCl 

NH4  Cl 

Water to 1 Litre 
pH adjusted to 7.0 

28g 

12g 

2g 

4g 

Sugars were added to lx M9 at a final concentration of 0.2%. 

Amino acids were added to lx M9 at a final concentration of 2ug/ml. 

For minimal agar, Davis N.Z. Agar was added to a final concentration of 

12. 52g/Litre. 

Bacterial Buffer: 	 KH2  PO4 	 3g 

Na2  HPO4 	 7g 

NaCl 	 4g 

MgSO4, 7H20 	 0.2g 

Water to 1 Litre 

Phage Buffer: 	 KH2  PO4 	 3g 

Na H2  PO4 	 7g 

NaCl 	 5g 

MgSO4 	 0.25g 

Ca Cl2 	 0.015g 

Gelatin 	 0.001 

Water to 1 Litre 

Antibiotics were added to the above media at a final concentration of: 

Tetracycline (Tc) 	 20ug/ml 
Ampicillin (Ap) 	 50ug/ml 

Chloramphenicol (Cm) 	 lOOug/ml 



Table2 .1 
	

Bacterial strains 

Strain 
	

Relevant features 
	

Source of reference 

thr 1 spc 300 Hfrpo 
ton A lad3  sup0  
arg lac tonA tsx 

W31 10 
AB2497 
JC1O-240 
AA1 25 
TKF1 2 
NEM259 
C600K 
N100 
DS41O 
JM1O1 
TO El 
TOE 13 

Prototroph 
thy A arg E leu his pro thr thi 1-1  
recA sr1380::tnlO thr300 ilv 318 rel 1 
(lacZ)

A 
 (trp ED) (gal-uvrB) his tsx 

ftsAts thr thi leu pyrE thyA ilvA his 
met Sull Sulli rm 
galK thr leu thi lac tonA supE 
galK recA pro his 
minA minB prototroph 
(lac pro)' thi strA end A sbc B15 SupE 
fts QtS  thyA argE leu his pro thr thi 
ftsAts thyA aryE leu his pro thr thi 

Laboratory stock 
Laboratory stock 

45 	 Csonka and Clark (1980) 
Laboratory stock 
Wijsman and Koopman (1976) 
Laboratory stock 
R. Hayward 
R. Hayward 
N. Willetts 
K. Murray 
This work 
This work 

F'tra D36 proAB lacI ZM15 

Phage 
NEM6l6 

' NEM6O7 
M6-2 
'l6-4 
'l6-2 E 
ddl 

Phage strains - Bacterial genes on phage 
1 acZ 

murG murC ddl fts Q fts A fts Z env A 
murG 	murC ddl ftsQ ftsAts ftsZ env A 
ddl ftsQ ftsA ftsZ envA 
murG murC ddl 

Wilson and Murray (1979) 
Murray, Bramniar and Murray (1977) 
Lutkenhaus and Donachie (1979) 
Lutkenhaus and Donachie (1979) 
J. Lutkenhaus 
J. Lutkenhaus 
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2.2 	Growth of Bacterial Cultures 

Stationary phase cultures were prepared by inoculating a 

single colony from an agar plate into fresh medium and incubating overnight 

at the appropriate temperature with vigorous shaking (New Brunswick 

Gyratory Shaker). 	Exponentially growing cultureswere prepared by diluting 

a fresh stationary phase culture 1 in 50 into fresh medium and incubating 

as above for 2-3 hours. 

2.3 	Monitorinq Cell Growth 

Cell mass was followed by measuring the optical density of a 

culture at 540nm (unless otherwise stated) using a Perkin-Elmer Coleman 

Model 55 Spectrophotometer. 

Cell size and number were measured in a Coulter Counter 

Model ZB interfaced with a Coulter Channelizer (Coulter Electronics Ltd., 

Harpenden, England). 	0.2mls of bacterial samples were mixed thoroughly 

with 0.2mls of filtered 0.5% formaldehyde solution. 	For counting, a 

50ul sample was diluted into 8mls of filtered azide-saline solution 

(NaCl 36g, NaN3 2g, water to 4 lit res). 	Bacterial cultures to be used 

for Coulter analysing were always grown in filtered media. 

2.4 	Synchronisation of Bacterial Cultures using Sucrose Gradients 

Sucrose gradients were prepared by layering 3mls each of 12%, 

10%, 8%, 6% and 4% Sucrose in filtered broth successively into a test 

tube. 	Cells from 200mls of an exponentially growing culture (0D540  

0.5-0.6) were harvested by centrifugation (10 mins, 5000g, 20°C), and 

resuspended in imi of fresh broth. 	0.5mls was layered onto each of two 



17. 

gradients and centrifuged in an MSE Mistral centrifuge with a swing-out 

rotor, at 2000rpm. The required centrifugation time varies for different 

bacterial strains but is usually between 10 minutes and 13 minutes. 	The 

small new-born cells were removed from the top of the gradient using 

a syringe and needle, in 0.1-0.2mls and inoculated into 30-40mls of 

fresh broth (Gudas and Pardee, 1974). 

2.5 	Transduction of Chromosomal Markers using P1 

P1 phage lysates were prepared by plating a mixture of 1 x 
10  

cells, 1 x 108  P1 phage and 3mls Top Agar (50°C) onto an L-broth agar 

plate containing 10 	M 	and incubating for 6-7 hours at the 

app ropriate temperature. 	2mls of phage buffer were added to the plate, 

the top agar removed, and clarified by centrifugation in a bench 

centrifuge. 

lOmis of recipient cells were grown to stationary phase in 

L-broth supplemented withlO 3M Ca, harvested by centrifugation in a 

bench centrifuge and resuspended in lml of broth. 	0.lml of recipient 

cells were mixed with 0.lml of a P1 lysate (contained approximately 

5 x 10 phage particles) and incubated at 37°C for 10 minutes. 	0.5mls 

of phage buffer added, and dilutions spread onto selective plates, 

(Masters, 1970). 

2.6 	Transduction of Chromosomal Markers using x transducing phage 

For spot test complementation of a temperature sensitive 

bacterial strain, 0.2mls of an overnight culture of the strain were mixed 

with 3mls of Top Agar and poured onto a broth agar plate. 	When the agar 
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had set, a loopful of phage suspension containing approximately i08  

phage was placed onto the agar, and allowed to dry in. 	The plate was 

incubated at the non-permissive temperature for 15 hours, and examined for 

temperature resistance in the phage spot (Lutkenhaus and Donachie, 1979). 

For transduction of the env A4phenotype, the plates were 

incubated at 30°C for 16 hours, and then a loopful of cells from the 

turbid patch streaked out onto broth agar plates containing 5ug/ml 

Rifampicin (Normark, 1970). 

2.7 	Construction of xlysogens 

0.2mls of an overnight bacterial culture and 3mls of Top 

Agar were mixed, poured onto a broth agar plate and allowed to set. 	The 

phage lysate was spotted onto the bacterial lawn and when dry incubated 

at the appropriate temperature overnight. 	Cells were picked from the 

turbid spot and streaked out to isolated colonies on a fresh agar plate. 

Single colonies were tested in a cross-streak for sensitivity to infection 

by Avirulent and a \homoimmune phage. 	Lysogens were sensitive to 

infection by xvirulent, but insensitive to superinfection by a xhomoimmune 

phage. 

2.8 	Hfr Crosses 

The donor Hfr culture was prepared by inoculating fresh broth 

1 in 50 from an overnight stationary phase culture and incubating at the 

appropriate temperature without shaking, until 0D540  0.3-0.4. 	An equal 

volume of this culture was mixed with an exponentially growing culture 

of the F recipient, and incubated without shaking. 	Samples were removed 
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at the appropriate times, and the conjugation terminated by vortexing. 

Dilutions were spread out immediately onto selective plates. 

2.9 	Preparation of xphage and xphage DNA 

2.9.1 	Induction of a 'xlysogen by UV-irradiation 

Lysogenic bacteria were grown in L-broth to 0D540  0.5, harvested 

by centrifugation at 8,000g, 10 minutes, at 200C and resuspended in 

10 2M MgSO4. 	The cells were UV-irradiated in a glass petri dish with 

a UV dose of 400 ergs/mm2, and then diluted four-fold into fresh 

pre-warmed L-broth. 	The flask was covered with foil and shaken vigorously 

for 2-3hours at 370C. lml of chloroform was added per 500nils of 

cul're and the lysate clarified by centrifugation for 10 minutes at 8,000g, 

4°C. 

2.9.2 	Liquid Infection with ' 

The host strain was grown in L-broth supplemented with 10_2  M 

MgSO4  to an 0D540  0.5. 	phage were added at an m.o.i. slightly in 

excess of 1, and the culture shaken vigorously for 3-4 hours at 37°C, 

or until the 0D540 reached a minimum. 	Chloroform was added, and the 

lysate clarified as above. 

2.9.3 	Plate lysate preparation of ),phage 

0.2mls of an exponentially growing culture were mixed with. 

0.lml of a lysate containing 1O7  phage particles and incubated at room 

temperature for 10 mins. 	3mls of Top Agar were added and the mixture 

poured onto a fresh L-broth Agar plate. 	After 7 hours incubation at 37°C 
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2mls of phage buffer were added and the top layer removed, and clarified 

in a bench centrifuge. 

2.9.4 	Titration ofxphage 

The titre of phage lysates was estimated by diluting to 10-6 

and 10_8  and mixing 0.lml of each dilution with 0,2mls of exponentially 

growing cells. 	After absorption, 3mls of Top Agar were added, and the 

mixtures poured onto broth agar plates and incubated overnight. 	Phage 

titres were 1-5 x 10 
9

pfu/ml. 

2.9.5 	Concentration of Xphage with PEG 6000 

40g/L of NaCl and 10% (w/v) PEG 6000 were dissolved in a 

clarified phage lysate, and the phage precipitated at 4°C overnight. 

The precipitated phage were harvested by centrifugation (5000g 10 minutes, 

4°C) and resuspended in phage buffer. 	DNAase and RNAase were added 

at bug/ml and incubated at room temperature for 30 minutes (Yamamoto, 

et al., 1970). 

2.9.6 	Concentration of xphage on CsC1 Step Gradients 

CsC1 solutions were prepared in phage buffer to densities of 

1.3, 1.5 and 1.7. 	3mls of each were layered into the bottom of a 

nitrocellulose tube with a pasteur pipette, the lighst solutions first, 

and the heavier solutions through these. 	The lysate was layered onto the 

CsC1 and the gradients spun at 22 Krpm 4°C for 3 hours in an SW25.1 rotor. 

Phage bands were collected through the side of the tube with a syringe 

and a 19G needle. 
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2.9.7 	Preparation of 	phage DNA 

CsC1 was removed from phage preparations by dialysis against 

phage buffer for 1-2 hours at 4°C. 	Dialysis tubing was always 

pre-boiled in 5mM EDTA for 15 mins and washed thoroughly in distilled water 

before using. 	Phage were extracted three times with an equal volume 

of pre-equilibr ated phenol. 	The aqueous layer was dialysed against 

TE for 16-20 hours with four changes of TE to remove all traces of 

phenol. 	DNA concentration was estimated by measuring 0D260, taking 0D260  

of 1.0 to be approximately 50ug/ml DNA. 

2.10 	Preparation of plasmid DNA by IsopycnicCentrifugatiofl 

lOOnils of cells harbouring a high copy number plasmid were 

grown to stationary phase in selective media. The cells were harvested 

by centrifugation at 80009, 10 minutes at 40C, and resuspended in 1.5mls 

of sucrose solution (Table 2.2). 	0.5mls of 0.5M EDTA and 0.25mls 

of lysozyme (10mg/nil) were added, and the suspension kept on ice for 10 

nuns with occasional swirling. 	4mls of lysis solution (Table 2.2) were 

added and the solution kept on ice for a further 10 mins with occasion 

swirling. 	The lysate was clarified by spinning at 15Krpm 40C for 30 

minutes in an 8 x 50 rotor. 	The supernatant was decanted and the volume 

made up to 9mls with TE. 	9g CsCl and 0.9mls Ethidium Bromide (5mg/nil) 

were added to the cleared lysate, and the plasmid DNA banded by 

centrifugation for 60 hours, 15°C at 38 Krpm in a Ti 50 rotor. 	The band 

of closed circular plasmd DNA (the lower of the two bands) was visualised 

under long wavelength UV light and removed through the side of the 

tube with a syringe and 19G needle. 	Ethidium bromide was extracted from 
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the plasmid DNA with 5 changes of Amyl  Alcohol (pre-equilibrated with 

water). 	The CsC1 was removed by dialysis against TE for 1-2 hours at 

4
0C, and the DNA precipitated with 2 volume of absolute ethanol and 1/10 

volume 3M Potassium Acetate at -70°C for 30 minutes. 	The precipitated 

DNA was pelletted in a microcentrifuge at 4°C, dried in a vacuum desicator 

ad resuspended in 200u1 of TE (see Clewell and Helinski, 1970). 

2.11 	Quick Method for preparation of plasmid DNA (Birnboim and Doly, 1979) 

This method was used for rapidly screening strains that contain 

plasmids. 	Of the several methods available for screening plasmids, 

this proved the most useful and up to twelve plasmids can be prepared in 

a few hours, that are suitable for digestion with restriction enzymes. 

Cells from an overnight culture were harvested by centrifugation 

for 1 minute in a microcentrifuge, and resuspended in lOOul lysis 

solution (Table 2.3). 	After 30 minutes on ice, 200ul of alkaline SDS 

solution (Table 2.3) were added, and after a further 5 mins. on ice, 

150ul of high salt solution (Table 2.3)were added. 	The chromosomal DNA 

and cellular proteins were precipitated on ice for 30 nuns, and removed 

by centrifugation for 5 mins in a microcentrifuge at room temperature. 

400j.1 of the supernatent were mixed with lml of cold ethanol (-20°C) and 

the plasmid DNA precipitated at -70°C for 30 mins. After harvesting 

in a microcentrifuge, the nucleic acids were resuspended in lOOul of 

low salt solution (Table 2.3) and reprecipitated with 200ul of cold ethanol. 

The nucleic acids were again harvested by centrifugation, dried in a 

vacuum desicator, and resuspended in 50u1 TE. 	Of this preparation, 

l5ul were used for restriction digestion and agarose gel electrophoresis, 

or for transformation. 
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Table 2.2 

Solutions for Preparation of Cleared Lysates: 

Sucrose Solution: 

Lysis Solution: 

50mM Tris H Cl 

40 r*1 EDTA 

25% Sucrose 

pH adjusted to pH 8.0 

2 mis 10% Triton x -100 

25 mls 0.5M EDTA pH 8.0 

10 mis 1M Iris H Ci pH 8.0 

Water to 200 mis. 

Table 2.3 

Solutions for Birnboim Plasniid Preparations: 

Lysis Solution: 

Alkaline SDS Solution: 

25nt1 Tris H Cl 	pH 8.0 

10mM EDTA pH 8.0 

50mM Glucose 

2mg/mi Lysozyme 

1% SDS 

0.2M NaOH 

High Salt Solution: 
	

3M Sodium Acetate pH 4.8 

Low Salt Solution: 	 0.lM Sodium Acetate pH 6.0 
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2.12 	Digestion of DNA with Restriction Endonucleases 

DNA was digested in a reaction mixture containing lug DNA, 

1/10 volume of the appropriate lOx reaction buffer, 1 Unit of enzyme and 

water up to 20ul in a snap-cap Eppendorf tube, and incubated for 1 hour 

at 37
0C. 	The reaction conditions for each enzyme are shown in Table 

2.4 	If digesting DNA with more than one enzyme, and the reaction 

conditions were different for each enzyme, the DNA was precipitated, 

dried and resuspended between the reactions. 	Reactions were terminated 

by heating to 70°C for 10 minutes, and then kept on ice. 

2.13 	Purification of DNA restriction fragments by sucrose gradient 

centri fugati on 

A two chamber linear gradient maker was used to pour 17m1 

5-20% sucrose gradients. 	Sucrose solutions were made in TE and boiled 

for 15 minutes before using. 	50-100ug of DNA was digested with the 

restriction enzyme and loaded onto the top of a gradient. 	The gradients 

were spun at 25 Krpm, 4°C for 20 hours in an AN 627 swing-out rotor. 

The gradient was fractionated into 0.2mls samples and lOul of each sample 

run on an agarose gel to determine which fractions contained the required 

restriction fragment. 	These fractions were pooled and the sucrose 

removed by dialysis against TE overnight. 	The DNA was ethanol precipitated, 

washed with lml of cold ethanol, dried and resuspended in 200ul TE. 

2.14 	Agarose Gel Electrophoresis (McDonnell et al., 1977) 

Gel solutions were prepared by dissolving 1.6g agarose (Sigma, 

electrophoresis grade) in 200mls of Iris-Acetate buffer (40*1 Tris, 20mM 
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Sodium Acetate, 100mM EDTA, pH 8.2), heating up to boiling point, and 

allowing to cool to hand-heat. 	Ethidium bromide was added to 0.5ug/ml 

and the solution poured into a perspex plate with 3mm surrounding 

spacers. 	Wells were formed with a perspex comb, and the gel allowed to 

set for 30 minutes. 

4u1 of loading buffer (50% Glycerol, 0.1% Bromopherol Blue 

in Tris-acetate buffer) were added to each DNA sample and loaded into the 

wells using a SOul Hamilton syringe. 	Gels were run either between wicks 

of 3MM filter paper (Whatman) or in a tank submerged beneath buffer, 

towards the positive electrode, until the Bromophenol Blue dye had 

travelled about three quarters the length of the gel. 	Gels were photo- 

graphed over long wavelength UV light, and photographed with Ilford FP4 

film, using a 15 second exposure through a red filter. 

2.15 	Ligation of DNA fragments 

DNA fragments with staggered ends were ligated in a reaction 

mixture containing 1-2ug DNA, 1/10 volume of 10 x ligase cocktail 

(66mM Tris pH 7.5, 1mM EDTA, 10mM Mg Cl 29 
 1mM, ATP, 10mM DTT) and 1 unit 

of T4 ligase (New England Biolabs), and water to the appropriate volume. 

If the DNA molecules were to be encouraged to circularise, then the 

volume of the reaction mixture was lODul. 	Otherwise volume-of 30-50u1 

were used. 	Ligation mixtures were incubated at 15°C for 3-4 hours. 

For ligation of DNA fragments with blunt ends, 30 units of 

ligase were used and the mixtures incubated overnight at 15°C. 
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2.16 	Transformation and Transfection 

To prepare competent cells, exponentially growing cells 

00540 0.5-0.6 were harvested in a bench centrifuge and resuspended in 

half the original volume of ice-cold 50mM CaCl2. 	The cells were 

immediately centrifuged again and resuspended in 1/15 the original 

volume of 50ntl CaCl2,'  and kept on ice for at least 30 minutes. 

For transformation, 0.2nil of competent cells were added to 

p'lasmid DNA, kept on ice for 30 minutes and then heat - pulsed for 

5 minutes at 42°C. 	lml of fresh broth was added and the cell suspensions 

incubated at 37°C (or 300C if the strain was temperature sensitive) 

for 1 hour to allow for expression of plasmid antibiotic resistance 

genes. 	0.lml of 10 	and 10_2  dilutions in broth were spread on selective 

agar plates and incubated overnight. 	Transformation frequencies were 

usually about 106  transforniants per ug DNA. 

For transfection, 0.2mls of competent cells were added to 

phage DNA, kept on ice for 30 minutes and then heat - pulsed for 2 minutes 

at 42°C. 	The cells were returned to ice for a further 30 minutes. 	3mls 

of top agar were added and the mixture poured onto an agar plate, and 

incubated overnight. 	Transfection frequencies were usually about 10 

pfu/ug DNA. 

2.17 	Preparation of minicells (Meagher et al., 1977). 

Cells from 2 litres of a stationary phase culture of strain 

DS410 were harvested by spinning at 8,200g 4°C for 10 minutes in a Sorvall 

rotor, and resuspended in 20mls of broth. 	Sucrose gradients were prepared 

by freezing (-20°C) 35mls of 20% sucrose in M9 Glucose, in a 50m1 tube 

and thawing slowly at 4°C. 	The concentrated cells were loaded onto 

four sucrose gradients and spun at 5000g, 4°C for 20 minutes in a Sorvall 
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HB-4 rotor, and the miniceli band (half-way up the gradient) removed 

with a syringe and 19G needle through the top of the gradient. The 

minicells were pelletted by spinning at 20,000g. 4°C, 10 minutes in 

an SS34 rotor, resuspended in 5mls of M9 Glucose, and layered onto two more 

sucrose gradients. Minicells were collected and pelletted as above and 

resuspended in lml M9 Glucose. 	This was layered onto one more sucrose 

gradient, and spun as above. 	The minicells were removed and harvested, 

and resuspended in lml of 30% Glycerol in M9 Glucose. 	Aliquots of 

minicells preparations were stored frozen at -70°C. 

2.18 	35 S labellinq of minicells 

Minicells preparations were thawed and diluted with M9 Glucose 

to achieve a lnil culture of 00600  0.2. 	The minicells were pelletted by 

spinning for 2 minutes in a microcentrifuge, and resuspended in lOOul of 

M9 Glucose. The preparations were pre-incubated at 37
0C for 60 minutes 

to remove any bacterial mRNA. 	A solution was prepared containing 4/5 

volumes of Difco methionine assay mix (25% in M9 Glucose) and 1/5 volumes 

35S-methionine, and an appropriate volume containing lOuCi of 35S added to 
each minicell preparation. 	After labelling for 3 hours at 37°C, each 

sample was chased with 5ul of cold methionine (8mg/mi) for 3 minutes, 

and the minicells harvested by spinning for 2 minutes in a microcentrifuge. 

Each preparation was washed with imi of 0.05M Tris-HC1 pH 6.8, repelletted, 

and resuspended in 25ul of loading buffer (0.6g SDS, imi p -mercaptoethanol, 

4iiils Glycerol, 12.5mls 0.5M Tris-HC1 pH 5.8 and water up to lOmls). 

The samples were boiled for 3 minutes, 5u1 of 0.1% Bromophenol Blue added 

and a 5u1 sample removed and dried onto glass filters. Filters were 



counted in 5mls of scintillation fluid (0.5% Butyl PBD in toluene) in a 

Packard Scintillation Counter, Model 3003. 

2.19 	SDS Polyacrylamide Gel Electrophoresis (Laemli, 1970) 

7-20% gradient gels were prepared for the separation of 

minicell proteins. 	7% and 20% solutions of acrylamide were prepared with 

the solutions in Table 2.5 using the lower tris buffer. 	Before adding 

the TEMED, the solutions were degassed using a vacuum line. 	l6mls of each 

solution were placed in each side of a linear gradient maker and 

poured between glass plates (28cms x 16cms) separated by 1mm perspex 

spacers. 	The gel was overlayed with isopropanol, and allowed to set 

for 60 minutes. 	The stacking gel was prepared, degassed, and after 

removing the isopropanol from the gel, the TEMED added and the stacking gel 

poured onto the separating gel with a pasteur pipette. 	A thirteen 

tooth perspex comb was inserted and the gel left to set for 30-60 minutes. 

The comb was removed and the wells rinsed with running buffer. 	Samples 

were loaded into the wells, with a 50ul Hamilton syringe, so that the number 

of counts were approximately the same in each track (about 106  cpm/track) 

and run overnight at a constant current of lOmA. 	Marker proteins 

were run in tracks either side of the radioactive samples and included: 

Bovine Serum Albumin 

Oval bumin 

Carbonic Anhydrase 

Soyabean Trypsin Inhibitor 

lactoglobulin 

M.W. 67,000 

M.W. 43,000 

M.W. 30,000 

M.W. 20,000 

M.W. 14,000 
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The acrylamide gel was removed from the glass plates, fixed 

in 45% Methanol, 9% acetic acid for 10 minutes, stained in 0.1% 

Coomassie blue, 45% Methanol, 9% acetic acid for 10 minutes, and 

destained for several hours with 4-5 changes of 7% acetic acid, 5% methanol, 

Fixing, staining and destaining were all at 37°C on a rotary shaker. Gels 

were dried down onto 3MM filter paper (Whatman) on a Bio-rad gel drier 

for 1 hour, and exposed to Kodak XH-1 film for 8-20 hours. 

2.20 Assay for Galactokinase 

Bacterial cultures were grown to 0D650  0.3-0.5 in oxoid 

nutrient broth and lml aliquots removed into a glass tube on ice. 

40u1 of lysis buffer (Table 2.6) and 1 drop of toluene added. 	The tubes 

were vortexed and incubated at 37°C for 15 minutes to evaporate the toluene. 

14 C - galactose (D - (1-14C) galactose, Amersham CFA 435) was 

diluted to a final specific activity of 4.5 x 106  dpm per umole, and 

filtered twice through DE81 paper in a swinnex filter. 	A reaction mixture 

was prepared containing 20ul mix 1, 50ul mix 2, and lOul '4C - galactose for 

each assay, and 80u1 distributed into the appropriate number of Eppendorf 

snap-cap tubes. 	20ul of each toluenised culture was added to the 

tubes and the reactions incubated for 30 minutes at 32°C. 	The tubes 

were transferred to ice and two 20u1 aliquots of each reaction mixture 

transferred to DE81 paper filters. 	The filters were washed in distilled 

water for four changes of water, blotted, dried in a 65°C oven, and counted 

in a Packard Scintillation Counter, Model 3003. 	The counts per 

minute for the two samples were averaged, and the average counts per minute 

of two blank filters (prepared by using a reaction mixture with 20u1 broth 
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Table 2.5 

Solutions for SOS Polyacryamide Gel Electrophoresis 

Acrylamide Stock: 	 Acrylamide 30g 

N N' Methylene bisacrylamide 0.8g 

Water to lOOmis 

Stored dark at 4°C 

Upper Tris (x 4): 	 Tris 6.06g 

SOS (10%) 4.Omls 

Water to lOOmis 

pH adjusted to pH 6.9 with H Cl 

Lower Tris (x 4): 	 Tris 18.17g 

SOS (10%) 4.Omls 

Water to lOOmis 

pH adjusted to pH 8.8 

Running Buffer: 	 Tris 3g 

Glycine 14.4g 

SOS (10%) lOmis 

Water to 1 Litre 

For Separating Gel:! 



32. 

For Separating Gel: 

7% 	 20% 

Acrylamide Stock 	 4.7mls 	 13.2mls 

10% Ammonium Persuiphate: 	 25u1 	 25u1 

Lower Tris Buffer (x4): 	 5mls 	 5mls 

Water: 	 9.3mls 	 1.8mls 

TEMED 	 15u1 	 15u1 

For Stacking Gel: 

Acrylamide Stock: 	 l.Oml 

10% Ammonium Persuiphate: 	 40u1 

Upper Iris (x4) 	 2.5u1 

Water: 	 6.5ul 

TEMED: 	 15u1 
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instead of culture) subtracted from this figure. 20u1 of two random 

samples was transferred to DE81 paper and dried without any 

washing. 	These were counted too and the average cpm calculated. 

The number of galactokinase units were calculated using the following 

equation: 

galactokinase = (cpm-blank 
	

5) x 5200 
2 

units 	
(Average of unwashed filters x 5 x time of x OD 

4 	 incubation 650 

(Adfya and Miller, 1979; 	Wilson and Hogness, 1966; McKenney et al., 

1981). 
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Table 2.6 

Solutions for assay rf galactokinase 

Lysis buffer: 	 100mM 	 EDTA 

	

100mM 	 OTT 

	

50mM 	 Tris HC1 pH 8.0 

Mix 1: 	 Sntl 	 OTT 

	

l6ntl 	 NaF 

Mix 2: 	 8mM 	 Mg Cl2  

	

200n14 	 Tris HC1 pH 7.9 

3.2 mM 	 ATP 
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CHAPTER 3 

Isolation of "TOE" mutants : identification of a new gene, fts Q 

3.1 	Introduction 

Cell division in E. coli requires the synthesis of the ftsA gene 

product in a 5-10 minute period during septum formation (Donachie et al. 

1979). 	Mutants in the ftsA gene grow as filaments at the restrictive 

temperature which are characteristically invaginated at the division site. 

These observations suggest that the ftsA gene product acts late in septum 

formation, and is therefore unlikely to be the.jgger that initiates the 

division process. 	Donachie et al. (1979) suggested from their data with 

synchronous cultures of 0V16 that there is a periodic requirement for 

synthesis of the ftsA protein. 	It is not known if ftsA protein is 

normally synthesised only at the time  of requirement in the cell cycle, 

or synthesised throughout the cycle but only the molecules made during 

the critical period are used for septation (Donachie et al. 1979). 	It 

was reasoned that there must be a class of genes that code for periodically 

required proteins. 	This class would include genesthat code for proteins 

that the cell can only respond to periodically, and genes that are synthesised 

de novo periodically. 	ftsA is the only known gene of this class, although 

termination protein and the hypothetical "trigger" for cell division also 

fall in this class. 	A novel selection procedure was devised for isolating 

mutants in such a class of genes. 

The "TOE" (Temperature Oscillation Enrichment) selection 

procedure involves temperature pulsing of an as]chronous culture at 

every mass doubling. 	The rationaleis that mutants of the desired 

class would be trapped at the restrictive temperature during successive 
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cycles, and due to their periodic nature, will not be able to compensate 

for the lesion at the permissive temperature and filamentous growth will 

result. 	Mutants in genes that are not periodically required will recover 

at the permissive temperature and grow as normal cells. 	The filaments can 

be separated from the normal sized cells by filtration through a membrane 

and recovered at the permissive temperature. 	Temperature sensitive 

mutants can then be detected by replica plating of olonies at 30°C and 42°C. 

3.2 	Isolation of UT0EII  mutants 

The multiple auxotrophic strain AB2497 was grown to mid-

exponential phase in oxoid nutrient broth at 30°C, pelleted in a bench 

centrifuge and resuspended in 	volume of bacterial buffer. 	The cell 

suspension was irradiated in a glass dish with a UV dosc of 1000ergs/mm 

diluted into fresh oxoid nutrient broth and grown to stationary phase 

overnight at 30°C. 

lOmis of this culture were diluted into 200mls of oxoid 

nutrient broth at 30°C, grown to 0D540  = 0.5 and diluted 1 in 2 into fresh 

prewarmed oxoid nutrient broth at 42°C. 1.5 minutes was required for 

this culture to equilibrate to 42°C, and then it was heat-pulsed for a 

further 5 minutes. 	The culture was cooled to 30°C by placing on ice, 

and incubated at 30°C again until the 0D540  = 0.5. 	Heat pulsing and 

growth were repeated twice more and the whole culture filtered through 

a sterile 14u millipore membrane. 	The membrane was washed through with 

200mls of bacterial buffer and placed in lOmis of oxoid nutrient broth. 

Cells were allowed to grow up at 30°C to stationary phase overnght. 

The temperature oscillation enrichment was repeated with this culture 

for a second cycle and the cells from the filter again grown to stationary 



Fig. 3.1. 	Phage mapping of TOP and TOE13 mutations 

The upper part of the diagram shows the complementation pattern of 

x transducing phage'. 	A + sign represents the ability for that phage to 

complement a mutant in the above gene. 	The bacterial insert in each phage 

is represented as an open box. 

06-4 is a transducing phage similar to x16-2 except an fts AtS  allele 

has been recombined onto the phage. 	(Lutkenhaus and Donachie, 1979). 

xdd1 is identical to xiiR2 show in Fig. 1.5. 

The construction of xFH16 and XGH200 is described in chapter 4. 

Restriction sites Hind III ( y  ) and Eco Ri ( z  ) are shown. 

The map location of fts Q is defined by the complementation pattern 

of TOE1 and TOE13 with these transducing phages, shown inthe lower part 

of the diagram. 
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phase. 	Dilutions of this culture were spread onto oxoid nutrient plates 

and incubated overnight at 30°C so that each plate had about 100 small 

colonies. 	These master plates were replica plated onto two oxoid 

nutrient agar plates, which were incubated overnight at 30°C and 42°C. 

About 1% of clones were temperature sensitive and these were picked 

from the 30°C plate for further examination. 

3.3 	Characterisation of "TOE" mutants 

From the initial selection two temperature sensitive 

designated TOE 1 and TOE 13, were co-transducible with leu (temperature 

resistance was 75% co-inherited when the mutants were transduced to leu+ 

with P1 grown on W3110) and were complemented in spot tests with 116-2. 

The results of a more detailed complementation analysis with derTvk'ci3 

of 216-2 are shown in Fig. 3.1. 	This complementation data suggests 

that the TOE 1 mutation maps in a previously unidentified gene that 

we have designated ftsQ  (Begg, Hatfull and Donachie 1980). 	ftsQ is 

adjacent to ftsA and anticlockwise of it. 	Complementation data with 

TOE 13 (Fig. 3.1) maps the mutation in ftsA. 

At the restrictive temperature TOE 13 grows as long filaments 

which are characteristically invagiriated at the division site, as are 

other ftsA mutants (Donachie et al. 1979). 	TOE 1 differs from TOE 13 

in that at the restrictive temperature it grows as long filaments which 

are straight sided and not invaginated (Fig. 3.2). 

TOE 1 also differs from TOE 13 in that the ability to form 

colonies at the restrictive temperature can be reversed by addition of 

1% NaCl to the media. 	The effect of intermediate NaCl concentrations 



Fig. 3.2. 	Photograph of a filamentous cell of TOE1 grown at 42°C 

This filamentous cell of strain TON (fts QtS) has been growing for 

four generations at 42°C and has reached a length of approximately 64um. 



) 

Fig 3.2 



Table 3.1. 	Effect of NaCl concentration on colony forming ability 

of TOE1 and TOP 3 at 42°C 

% NaCl in agar 

0.5 	0.6 	0.7 	0.8 	0.9 	1.0 

TOE 	- 	- 	- 	+ 	+ 	+ 

TOE 13 	- 	- 	- 	- 	- 	- 

+ designates healthy growth 

- absence of growth 

+ some growth 



on the colony forming ability of TOE 1 and TOE 13 is shown in Table 3.1. 

A recA derivative of TOE 1 was constructed by mating TOE 1 

with JC1O-240 for 25 minutes at 30°C and plating onto oxoid nutrient agar 

containing streptomycin (200 ug/ml) and tetracycline (20 ug/ml). 	Forty 

clones were tested, and all were found to be  sensitive to nitrofurantoin 

(4 ug/ml) and to have an increased sensitivity to UV-irradiation. 

One clone was purified, checked for temperature sensitivity and designated 

TOE 1 recA. 

Spot test complementation tests with TOE 1 recA gave identical 

results to those shown in Fig. 3.1. 	Lysogens of TOE 1 recA were 

constructed at 30°C with 16-2, ).ddl and A.FH16 and tested for 

temperature sensitivity on oxoid nutrient plates. 	All lysogens were 

temperature resistant. 

3.4 	Physioloqical analysis of TOE 1 

3.4.1 	Kinetics of cell division during temperature shifts in 

asynchronous cultures 

An overnight culture of TOE 1 in oxoid nutrient broth was 

diluted into the same medium and grown at 30°C into exponential phase. 

(Microscopical examination revealed that in early log phase growth the 

mutant cells separate poorly and tend to grow as chains, although the 

culture becomes more homogeneous with better cell separation after 

2-3 hours growth). 	On shifting this culture to 42°C cell division 

stopped immediately, although cell growth continued exponentially for 

at least three mass doublinjs resulting in the formation of long 

filaments (Fig. 3.2 and Fig. 3.3). 	These filaments were examined 



Fig. 3.3. 	Kinetics of cell growth and division in a log-phase population 

of strain TOP after a shift from 300C to 420C 

After shifting to the restrictive temperature, cell mass was 

followed as 0D540  (0), and cell number (x) and median cell volume (0) 

measured in the Coulter Counter and Chanrielyzer. 
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microscopically on agar containing chioramphenicol (200 ug/mi) and 23% 

polyvinylpyrollidone (Donachie et al. 1979), and observed to be multinucleate 

indicating that DNA replication and segregation were not affected. 	These 

results are consistent with the idea that the TOE 1 mutation is in a 

late acting gene involved specifically in cell division. 

3.4.2 	Kinetics of cell division followinq a temperature shift-down in 

synchronous culture of TOE 1 

Small cells from a 400 ml starting culture of TOE 1 were prepared 

by sucrose gradient centrifugation as described in chapter 2, and 

in oculated into 35 mls of prewarmed oxoid broth at 42°C. 	5 mls samples 

were removed at times 0, 25, 30, 40,45 and 50 minutes and incubated 

in separate flasks at 30°C. 	A culture was kept at 42°C throughout the 

experiment as a 42°C control culture. 	0D540  readings and samples 

for cell size and number determination were taken every ten minutes 

from each culture. 	Fig. 3.4 shows the 0D540, cell number and 

median cell size plotted against time. 	A microscopical examination 

of the cultures indicated that after septum formation, cell separation 

was poor, as was observed in early log-phase asynchronous cultures. 

Cell number determination by the Coulter Counter does not therefore 

give a reliable assessment of the septation process, but only of 

cell separation. 	In order to quantitatively analyse the septation 

process the percentage of dividingcells was estimated by microscopically 

examining the formaldehyde fixed samples, and scoring the number 

of cell doubles (those containing a visible constriction). 	100 cells 

from each sample were counted. 	The percentage of dividing cells in 

this experiment are shown in Table 3.2. 	The cell numbers corrected 



Fig. 3.4. 	Kinetics of cell division following a temperature shift-down in 

synchronous cultures of TON 

Aliquots of a synchronous culture of strain TOP were shifted from 

42°C to 300C at various time intervals after innoculation of the small cells 

0 	 - 
into broth at 42G. 	Cell mass was followed as 0D540  (0), and cell number W6'] 

(A) and median cell volume (o ) measured in the Coulter Counter and 

C han n6 i yze r. 

The time that samples were shifted to 30°C is shown in a box at 

the top left of each graph. 
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Table 3.2. 	Percentage of cells containing a visible constriction in 

synchronous samples of TOE 1 shifted from 42°C to 30°C 

(see Figs. 3.4 and 3.5). 

Shifted at 0 minutes (%) 	 Shifted at 25 minutes (%) 

	

0' 	 4 	 25' 	 2 

	

10' 	 4 	 35' 	 4 

	

20' 	 2 	 45' 	 50 

	

30' 	 2 	 55' 	 68 

	

40' 	 14 	 65' 	 20 

	

50' 	 28 	 75' 	 22 

	

60' 	 42 	 86' 	 10 

	

70' 	 62 	 96' 	 50 

	

80' 	 50 	 96' 	 50 

	

90' 	 32 

	

100' 	 34 

Shifted at 30 minutes (%) Shifted at 40 minutes (%) 

30' 2 40' 2 

40' 2 50' 6 

50' 74 60' 66 

60' 28 70' 66 
(approx. 	1/3 2nd 
cycle) 

70' 6 80' 14 

80' 10 90' 22 

90' 40 100' 26 

100' 28 100' 26 



Table 3.2. (continued) 

Shifted at 45 minutes (%)  

45' 2 

55' 2 

65' 2 

75 1 (approx. 
2nd cycle) 

86' 20 

96' 34 

Shifted at 50 minutes (% 

50' 2 

60' 2 

70' 42 

80' 
82 (approx. 	2/3 

2nd cycle) 

90' 38 

100' 16 



Fig. 3.5. 	Corrected cell numbers in synchronous samples of TOEl shifted 

from 42°C to 30°C 

Cell numbers, as measured in the Coulter Counter in Fig. 3.4, were 

corrected for the percentage of cells containing a visible constriction. 

The corrected cell number (4)  is shown here for each samp1e(t 6 . 

The time that samples were shifted to 30°C is shown in a box at 

the top left of each graph. 
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for the percentage of dividing cells are shown in Fig. 3.5. 

3.4.3 	Temperature pulsing of synchronous fractions of TOE 1 

Small cells from a 400 ml starting culture of TOE 1 were 

prepared as in chapter 2, and i noculated into 45 mis of oxoid nutrient 

broth, prewarmed at 30°C. 	At time 0 minutes 5 mis was removed into 

a separate flask prewarmed at 42°C and incubated throughout the 

experiment as a 42°C control culture. 	At times 0, 25, 30, 40, 45 and 

50 minutes, 5 ml samples were removed into flasks prewarmed at 42°C 

and heat pulsed at 42°C for 8 minutes. 	Each sample was then 

incubated at 30°C for the remainder of the experiment. 	0D540  readings 

and samples for cell number and size determination were taken at suitable 

intervals from each sample. 	Fig. 3.6 shows these parameters plotted 

against time for each sample. 	As in other experiments with TOE 1, 

cell separation was again poor and the percentage of dividing cells in 

each sample were estimated (Table 3.3). 	The corrected cell numbers 

are shown in Fig. 3.7. 



Fig. 3.6. 	Kinetics of cell division following temperature pulsing of 

synchronous cultures of TOP 

Small cells from a sucrose gradient were innoculated into broth 

(300C) at 0 minutes. 	Aliquots were shifted at various times for 8 minutes 

0 	 0 	
(do) 

at 42 C and then returned to 30 C. 	Cell mass was followed as 0D540  (0), and 

cell number (A) and median cell volume (ci) in the Coulter Counter and Channelyzer. 

There was insufficient volume of culture to follow the 0D540  beyond 80 minutes. 

0D540  readings were not taken in samples other than the 0 minute pulse culture, 

and 300C and 420C control cultures. 

The time that samples were shifted to 30°C is shown in a box at the 

top left of each graph. 



3 

0 	50 	100 	0 	50 	100 

	

[i1 	 ODD 

000000 	 0 	 0 
0 	 o 

0 	 0 
0 	 0 

	

0 	 o 
0 

10 	 10 

___ • 

	

1275 	 D D 

0 00  00  

0 

10 	 10 

50 	100 	0 	50 
TIME 

Fig 3.6 

Kol 



0 	 50 	100 0 	50 	100 

42C Control 
Do 

0 0  
0 

0 

0 
ri 

A 

0 	 50 	100 

TIME 

Fig 3.6 (cant.) 



Table 3.3. 	Percentage of cells containing a visible constriction in 

synchronous samples of TOE, temperature pulsed at 42°C 

(see Figs. 3.6 and 3.7) 

30°C Control (%)  

0' 2 

10' 2 

20' 2 

30' 6 

40' 10 

50' 46 

60' 70 

70' 52 

80' 42 

90' 48 

100' 70 

110' 48 

Pulse at 0' minutes (%) 

0' 2 

8' 2 

18' 2 

28' 2 

38' 30 

50' 42 

60' 52 

70' 44 

80' 36 

90' 60 

100' 68 

110' 58 

Pulse at 10 minutes (%)  

10' 2 

18' 2 

30' 2 

40' 10 

50' 64 

60' 84 

70' 64 

80' 34 

Pulse at 20 minutes (%) 

20' 2 

28' 2 

40' 4 

50 28 

60' 78 

70' 80 

80' 68 

90' 62 



Table 3.3 (continued) 

Pulse at 10 minutes (%) 	 Pulse at 20 minutes (%) 

	

90' 	 46 	 90' 	 62 

	

100' 	 68 	 100' 	 58 

	

110' 	 40 	 110' 	 36 

Pulse at 25 minutes 	(%) Pulse at 30 minutes (% 

25' 2 30' 2 

33' 2 38' 2 

40' 4 50' 14 

50' 28 60' 42 

60' 60 70' 78 

70' 64 80' 66 

80' 66 90' 74 

90' 62 100' 64 

100' 70 110' 42 

110' 52 

Pulse at 40 minutes (%) Pulse at '0 minutes 	(%) 

40' 14 3'0' 

48' 16 58' 

58' 18 48' 4-2 

68' 30 78' 34 

78' 54 681  7r 



Table 3.3 (continued) 

Pulse at 40 minutes (%) 	 Pulse at 50 minutes (%) 

	

89' 	 70 	 q' 	 79. 

	

99' 	 68 	 foe,  ' 	 48 

	

109' 	 56 



Fig. 3.7. 	Corrected cell numbers in synchronous samples of TOP temperature 

pulsed at 42°C 

Cell numbers, as measured in the Coulter Counter in Fig. 3.6, were 

corrected for the percentage of cells that contained a visible constriction. 

The corrected cell number (A) is shown here for each sample(i6) 

The time that samples were shifted to 30°C is shown in a box at the 

top left of each graph. 
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3.5 	Discussion 

The TOE selection procedure has been used to isolate mutants 

in essential cell division genes. 	The procedure was devised to 

isolate mutants in genes that were periodically required for cell 

division, although it is not yet clear if the selection enriches for these 

mutants 	above the total population of mutants in cell division 

genes. 	However, a more detailed analysis by Dr. Begg (in this laboratory) 

shows that of the 35 mutants so far isolated, 11 are linked to leu by 

P1 transduction, and 7 of the 35 mutants map in the ftsA gene. 	Two 

mutants (including TOE 1) have been isolated in the ftsQ gene. 	A 

control experiment is in progress (by Dr. Begg) to isolate total 

filament forming temperature sensitive mutants by filtration, and 

examine the proportion of mutants linked by P1 transduction to leu 

and the proportion of ftsA and ftsQ mutants. 	If the results from 

the control experiment differ from the TOE selection procedure, this 

would indicated strongly that "TOE" selection does enrich for mutants 

in periodically required genes. 

The isolation of TOE 1 has been extremely useful. 	Complementation 

with the transducing phages clearly identifies this mutant as mapping 

in a previously unidentified gene, that we have designated ftsQ. 	This 

gene maps adjacent and anticlockwise to ftsA, but unlike all the ftsA 

mutants so far isolated, does not have invaginations in the fil'ments 

(at the restrictive temperature) and the temperature sensitive lesion can 

be reversed by increasing the salt concentration to 0.9%. 	The possibility 

that the TOE 1 mutation lies in the N-terminal part of the ftsA gene, and 

Addl complements by polypeptide complementation is considered unlikely. 

ddl carries nearly all of the ftsA gene (missing only 150-300 bps) but 
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doesn't complement any of the ftsA mutants so far isolated (e.g. TKF12, 

0V16). 	Complementation data in chapter 5 confirms that the mutation 

does not lie in ftsA. 	Complementation of TOE 1 and TOE 1 recA by the 

'x transducing phage as lysogens, or as a spot test where phage promoters 

are switched off (Reichardt and Kaiser 1971) would suggest that a 

promoter for ftsQ is present on the bacterial insert, and more specifically, 

on the 2.2kb EcoRl restriction fragment. 	This fragment also carries 

the ftsA gene, which codes for a 50 Kilodaltons protein (Lutkenhaus and 

Donachie 1979). 	Assuming an average amino acid weight of 115 daltons 

there is sufficient coding capacity on the 2.2kb EcoRl fragment to 

code for an additional 34 Kilodalton protein, although some of the 

coding capacity may be occupied by the N-terminal part of the ftsZ 

gene, and possibly the C-terminal part of the ddl gene. 	(Lutkenhaus 

and Wu 1980). 

The physiological analyses of the TOE 1 mutant were designed 

to determine a) whether the ftsQ product was required throughout 

septation, or only in the initiation of septation, and b) whether the 

ftsQ product was required periodically. 

The physiological analyses of TOE 1 are complicated by the failure 

of the cells to separate well in synchronous fractions. 	This failure 

to separate also occurs in asynchronously growing cultures of TOE 1. 

The mutation not only prevents septum formation at 42°C but also 

inhibits cell separation at 30°C. 	The estimation of cell number by the 

Coulter Counter is therefore difficult to interpret, as it is a function 

of both septum formation, and cell separation, and the degree of cell 

separation appears to vary greatly in different cultures, and cells in 

mid-log asynchronous growth cultures of TOE 1 actually separate quite 
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well. 	The problem of cell separation can be partially overcome by 

counting the percentage of cells that can be seen to be dividing and 

adjusting the Coulter Counter measurement of cell number accordingly. 

However, this introduces two new problems. 	Firstly, cells with a 

visible constriction are effectively scored as two cells, before 

they have completed septation, and this has the effect of apparently 

bringing forward the time of division. 	Secondly, it is assumed that 

those cells containing a visible constriction will go on to complete a 

division. 	In a cell division mutant which has spent some time at the 

restrictive temperature, this will be a false assumption in some 

cell samples. 	For those reasons, cell numbers, (Coulter Counter), 

the percentage dividing cells, and the corrected cell number are all 

presented. 

There are three lines of evidence to suggest that the ftsQ 

product is required throughout septation. 	The filaments produced 

at the restrictive temperature are predominantly straight-sided and do 

not contain the invaginations that ftsA filaments do. 	Presumably the 

ftsQ product is required at a fairly early stage in the division process. 

However, cell separation is also affected by the ftsQ mutation, and this 

is reflected by the physiology of TOE 1 at 30
0C, suggesting that the 

ftsQ product may be required right up to the last stages of division. 

Temperature shifting an asy'èhronous culture of TOE 1 from 300C to 42°C 

(Fig. 3.3) results in an immediate stop to cell division, and this also 

suggests that the ftsQ product is required throughout cell division. 

If 	ftsQ was only required for the initiation of septation, then 

those cells that had initiated septa at the permissive temperature would 

go on to divide, and residual division would be observed. 	The quick stop 
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of division also suggests that the ftsQ product in TOE 1 is inactivated 

very quickly at the restrictive temperature. 

The results in Fig. 3.4 show that the ftsQ product is not 

required at all in the first 25-30 minutes of the 	division cycle, 

as the timing of division does nof appear to be significantly affected 

by a 25 or 30 minute period of growth at 42°C, and these samples divide 

at about the same time as the 30°C control culture (about 60 minutes 

into the cycle). 	The period at 42°C appears to improve the separation 

of cells after septation at 30°C. 	The correction for % dividing cells 

(Fig. 3.5) for these cultures, also suggests that the cultures shifted 

at 25 minutes and 30 minutes divide at the same time as the 300C control. 

This therefore accordswith the expected behaviour of a mutant in a gene 

that is required specifically for division. 

In experiment 3.4.2, samples were also held for longer 

periods at 42°C, to determine if the ftsQ product is periodically required. 

The rationale for this experiment was that if the ftsQ product is not 

periodically required, then cells in samples held at 42°C when the first 

division was due to occur would be able to divide immediately they 

were returned to 300C (or after a constant delay). 	If the ftsQ 

product was periodically required, then these samples would not be 

able to divide until they reached the next period in the second cycle. 

The results in Fig. 3.4 and Fig. 3.5 indicate that in this 

experiment it is difficult to differentiate between a constant delay and 

the"missing" of a cell division. 	In Fig. 3.4, all the samples divide 

approximately 30 minutes after shifting back to 30°C. 	This may not be 

interpreted as a constant delay however, as an inspection of Table 3.2 
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shows that due to the greater growth rate at 42°C the 40, 45 and 50 

minute samplecall have a large number of second cycle divisions occurring 

by 70 minutes into the cycle. 

Experiment 3.4.3 was devised to attempt to overcome the 

problems in the above experiment. 	Having defined the period when 

ftsQ is required in the cell cycle, synchronous cultures were pulsed for 

only 8 minutes at the restrictive temperature, so that the difference 

in growth rate between different samples would not be appreciable, and 

that if there was a constant delay after returning to 30°C (i.e. not 

periodically required) this would be distinguishable from entry into 

the second cycle. 

Fig. 3.6 shows that all the samples in this experiment, 

including the 30°C control sample separated badly, and the cell numbers 

can not be interpreted without correction for the percentage dividing 

cells (Fig. 3.7). 	An examination of Fig. 3.7 shows that 8 minute pulses 

at 0, 10, 20 and 25 minutes into the cycle do not affect the time of the 

first division (about 50 minutes into the cycle), and they all septate at 

about the same time as the 30°C control. 	The second cycle divisions 

in the 0, 10, 20 and 25 minutes samples all occur at the same time 

(90 minutes), and slightly earlier than the 300C control (100 minutes) 

presumably due to the slightly greater growth rate at 42°C. 

The first cycle division is affected by temperature pulsing 

at 30, 40 and 50 minutes. 	In the 30 minute sample, the division is very 

slightly delayed, and in the 40 minute sample, although septum formation 

has already begun when shifted to 42°C, it is halted, and restarts about 

10 minutes after shifting back to 300C. 	In this sample, the delay in the 

first division causes it to run into the second cycle, so that there is 



47. 

no plateau in cell number between the divisions. 	In the 50 minute 

sample, septum formation has already begun when shifted to 420C. 	As 

in the 40 minutes sample, septum formation and cell separation stopped 

immediately, but cell number does not rise after returning to 30°C 

until 80-90 minutes when the second cycle has arrived. 	This physiological 

data would suggest therefore that the ftsQ product 	may be periodically 

required for cell division. 	If the product is not active during the 

critical period, then septation can not occur, and only resumeswhen the 

critical period is reached during the next cell cycle. 	This periodicity 
E!.SECt 

could be periodic requirement for synthesis/ for- ftsA, or there could be 

periodic competence for the cell to respond to active ftsQ product 

irrespective of when in the cycle the product was synthesised. 

Unfortunately, an amber mutant is not available in ftsQ to physiologically 

differentiate these two aspects. 

The following conclusions can be made: 

"TOE" selection procedure has been used to isolate cell 

division mutants, and amongst these are mutants in ftsA 

and a new gene ftsQ. 	 - 

Physiological 	analyses with TOE 1 (ftsQ 5 ) suggest that 

the ftsQ product may be . periodically required. 	This 

does not prove that "TOE" selection successfully enriches 

for mutants in periodically required genes, as the 

frequency with which these mutants are isolated in the 

control experiment is not yet known. and TOE 1 may have 

been selected for a much simpler reason, such as its very 

poor cell separation. 
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CHAPTER 4 

Cloning of the 2.2kb Eco Ri Restriction Fragment 

4.1 	Introduction 

The x16-2 trarducing phage (Fig. 1.2) isolated by Lutkenhaus 

and Donachie (1979) contains a chromosomal insert of approximately 

10.5kb and carries at least seven complete chromosomal genes. 

(Lutkenhaus and Wu 1980,AHatfuil  and Donachie 1980. 	A detailed 

analysis of these genes (and in particular ftsA) can be simplified 

by the subcloning of restriction fragments from this phage (Lutkenhaus, 

Wolf-Watz and Donachie 1980). 	An attempt was made to subclone a 

restriction fragment that carried the ftsA gene. 

Two different cloning systems were used to subclone the Eco Ri 

fragments from x16-2: 	xcloning vectors and non-conjugative copy 

number plasmids. 	xtrans'ducing phage are convenient for complementation 

analysis and the mapping of chromosomal mutations, whilst restriction 

analysis and construction of small deletions is easier in small plasmid 

recombinants. 

4.2 	Subcioning into Avectors 

Two vectors were used for subcloning Eco Ri restriction fragments: 

XNEM616 and XNEM607 (Fig. 4.1). 	ANEM616 is a non-temperature 

sensitive 	immunity derivative ofANEM816 (Wilson and Murray 1979), a 

replacement vector derived from X  plac5. 	It is integration proficient, 

immunity 21, and carries the entire iacZ gene and its promoter. 

Part of the lac -L' gene (and the promoter) lies between the two Eco Ri 

restriction sites and can be replaced by donor DNA to give recombinant 



Fig. 4.1. 	Physical maps of x phages used to clone the 2.2Kb Eco Rl restriction 

fragment 

XNEM616 is a replacement vector, with immunity 21. 	The promoter and 

part of the structural gene of lac Z lie between the two Eco Rl sites, so that 

replacement of this fragment gives the phage a lac phenotype. 	(Wilson and 

Murray, 1979). 

XNEM607 is an immunity insertion vector. 	There is a single Eco Rl restriction 

site within the immunity 434 region, so that the insertion of Eco Rl fragments 

into this site results in phage with a clear plaque morphology. 	(Murray, Bramar and 

Murray, 1977). 

x16-2AE is a deletion derivative of x16-2. 	The extent of the deletion 

is not known, although this phage has not lost any Eco Rl or Hind III restriction 

sites. 	The open box represents the bacterial insert in this phage. 
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phage with a Lac phenotype. 	If there is no DNA inserted between the 

Eco Ri sites then there is insufficient DNA to efficiently package into 

the phage heads, and the phage grow as very small 'pin-point' plaques. 

(Murray, Brammar and Murray 1977). 

x16-2E (Fig. 4.1) was used to donate bacterial DNA, and is 

a deletion derivative of x16-2 (Lutkenhaus, Wolf-Watz and Donachie 

1980). 	This phage differs from x16-2 in that bacterial DNA anticlockwise 

from the left-most Hind III site has been deleted, so that x16-2tE 

does not complement mur C or niur G mutants. 	No Fund III or Eco Ri restric- 

tion sites have been lost in the construction of x16-2ZtE (see Fig. 1.4. 

for a comparison). 

x16-2iE was digested to completion with Eco Rl, ligated with 

EcoRl digested xNEM616 and plaques recovered by transfection into AA125. 

The transfection mixture was plated onto MacConkey lactose agar 

plates and 20 non-red plaques picked from the plates with sterile 

pasteur pipettes, into lml aliquots of phage buffer. 	Phage 

suspensions were sterilised with chloroform and tested for the ability to 

complement TKF12 (ftsA) at 42°C or D22 (envA) on agar containing 5 ug/mi 

Rifampicin (Normark 1970). 	Four phage transduced the envA marker, and 

four phage transduced the ftsA marker, although no phage complemented 

both markers. 	One of the recombinant phage that complemented envA was 

designated AGH200, and shown to contain a 2.4kb Eco Rl insert, but was 

not characterised further. 

A recombinant phage that transduced the ftsA marker was 

designated XGH16, and an Eco Ri restriction digest showed that it contained 

a 2.2kb Eco RI fragment, inserted into the phage arms (Fig. 4.2). 	The 

right arm must come from XNEM616 as this arm of x16-2IiE is cleaved 



Fig. 4.2. 	O.8%agarose gel of Hind III and Eco Ri digestions of XNEM616, xGH616 

and x16-2AE 

Track 

1 	 x16-2 AE Hind III + Eco RI 
2 	 x16-2AE Eco Ri 
3 	 x16-2 AE Hind III 
4 	 xGH16 Hind III + Eco RI 
5 	 XGH16 Eco Ri 
6 	 xGH16 Hind 	III 
7 	 xNEM616 Hind III + Eco Ri 
8 	 xNEM616 Eco RI 
9 	 xNEM616 Hind 	III 

Fig. 4.3. 	0.8% agarose gel of Eco Ri restriction digestions of XGH16, XNEM607 

and xNY-1 

Track 

1 	 XGH16 	 Eco Ri 
2 	 ANEM607 	 Eco Ri 
3 	 xNY-1 	 Eco RI 
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in several places by Eco Rl. 	The Hind III digest and Hind III, Eco Rl 

double digest of xGH16 indicate however that x&H16 has the left arm 

of x16-2E rather than ANEM616 (Fig. 4.2). 	The Hind III digest 

yields a small fragment of approximately 0.6kb, and as the nearest 

Hind III to the cloning sites in xNEM616 is 1.2kb away, either there 

are two kind III sites within the 2.2kb Eco RI fragment or an additional 

Hind III site has been introduced on thephage left arm. 	The small 

Hind III fragment is cleaved by Eco RI close to one end (Hind III, Eco Rl 

double digest, Fig. 4.2) and therefore both Hind III sites cannot be 

within the Eco Rl fra3rnf, and one Hind III site must be in the phage 

left arm close to the Eco Ri site. 	The phage left arm inA(H-16(Fig. 4.4) 

therefore comes from 216-2E and contains some chromosomal DNA internal 

to the rnurC gene as well as the 2.2kb Eco Rl fragment. 	Lutkenhaus, 

Wolf-Watz and Donachie (1980) mapped the Eco Rl and Hind III sites in 

16-2,and the position of the sites in the murC gene confirms the 

construction of AGH16. 

For the purposes of complementation analysis it was desirable to recon-

struct this phage so that it contained only the 2.2kb Eco RI fragment, 

and this was achieved in a two stage process. XGH16 was digested with 

Eco Rl, and ligated ith ANEM607 and plaques recovered by transfection 

into AA125. 	2LNEM607 (Fig. 4.1) (Murray, Brammar and 1urray 1977) 

is an immunity insertion cloning vehicle, with a single Eco Rl site 

within the C1  gene of immunity 434. 	Recombinant phages with a clear 

plaque morphology from the transfecon were picked with sterile 

pasteur pipettes into lml aliquots of phage buffer. 	One of 

these phage was designated ?NY-1 and DNA from this phage was prepared. 

Eco RI digestion of NY-1 (Fig. 4.3) shows it to contain the 2.2kb Eco Rl 

fragment inserted into the phage arms of NP-1607. 	XNY-1 was digested 



Fig. 4.4. 	Physical maps of recombinant x transducing phages carrying the 2.20 

Eco Ri restriction fragment 

Single lines represent phage DNA, filled boxes the inserted DNA, and open boxes 

bacterial DNA other than the insert. 

xGH16 carries the 2.20 Eco Ri restriction fragment within the left arm 

of x16-2AE and the right arm of xNEM616. 	The phage is immunity 21, and also 

contains DNA from within the mur C gene (in the dotted box). 

XNY-1 carries the 2.2Kb Eco Ri fragment within the phage arms of xNEM607. 

This phage has a clear pciqe morphology. 

xFH16 carries the 2.20 Eco Ri fragment with the arms of xNEM616. 	The 

left arm also carries some DNA from the C-terminal end of the lacZ gene. 	This phage 

is immunity 21. 	The orientation of the insert has not been determined. 
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with Eco Rl, ligated with Eco Rl digested xNEM616 and plaques recovered 

by transfection into AA125. 	Turbid, non-red plaques from MacConkey lactose 

agar plates were tested for the ability to transduce the ftsA marker, 

and one such phage was designated xFH16. 	(Fig. 4.4). 	This phage is 

integration proficient and immunity 21. 	After this phage was 

constructed, 	Lutkenhaus, Wolf-Watz and Donachie (1980) reported 

constructing a similar phage xJFL41, which also complemented ftsA 

markers as do both xGH16 and xFH16. 

(&ii 

As discussed in chapter 3, these phagealso complement TOE 1 

(ftsQ+S) as well as ftsA 	mutants. 	When inserted as a lysogen in a 

recA derivative of TOE 1 the phage promoters P 
L 
 and P 

R 
 are not active 

(Reichardt and Kaiser 1971) and therefore expression of the ftsQ gene must 

be from a bacterial promoter. 

4.3 	Cloning into pBR325 

pBR325 (Fig. 4.5) is a 6.0kb high copy number plasmid 

vector derived from pBR322 (Bolivar et a1. 1977) by the insertion of the 

chioramphenicol acetyl transferase gene from picmR  (Bolivar 1978). 

This gene confers resistance to chioramphenicol and has a single Eco Rl 

site within it. 	This is the only Eco Rl site in pBR325 and cloning DNA 

fragments into it destroys the ability to confer resistance to 

chioramphenicol. 	Like pBR322, pBR325 also confers resistance to 

tetracycline and ampiciliin. 

AY-1 was digested with Eco Rl and ligated with Eco Rl digested 

pBR325. 	Ampiciin, tetracycline resistant clones were recovered by 

transformation into NEM259 and plating onto selective agar plates. Of 200 

transformants that were tested, 20 clones had a recombinant phenotype 



Fig. 4.5 	Physical map of pBR325 

This map shows relevant restriction sites and the approximate 

location of the ampicill ti resistan gene (A') tetracycline resistance 

gene (TcR)  and chlor amphenicol resistanc gene (Cm R). 	(Bolivar, 1979). 
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Fig. 4.6. 	0.8% agarose gel of Hind III, BamHl and Eco RI restriction 

digestions of pBR325 and pGH-4 

Track 

1 1857 Eco Ri 	 Hind III 

2 pBR325 Eco RI 

3 pBR325 Eco Ri 	 Hind III 

4 pBR325 Eco Ri 	 Barn Hi 

5 pGH-4 EcO Ri 

6 pGH-4 Hind 	III 

7 pGH-4 Barn 	I-ti 

Sizes ofC1857  Hind III, Eco Ri fragments are 21.7kb, 5.24kb, 

5.05kb, 4.21kb, 3.41kb, 1.98kb, 1.90kb, 1.57kb, 1.32kb, 0.93kb, 

0.84kb, 0.58kb. 
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(APR TcR,  CmS), and the Eco Ri restriction patterns of Birnboim 

preparations of ten of these were examined by agarose gel electrophoresis. 

One of these clones yielded a 6.0kb fragment and a 2.2kb fragment upon 

Eco RI digestion, (Fig. 4.6) and this plasmid was designated pGH-4 

(Fig. 4.7). 	Hind III digestion of pGH-4 (Fig. 4,6) yields two fragments, 

one of 5.3kb and one of 2.9kb, 	Eco Ri, Hind III double digestion of 

pBR325 (Fig. 4.6) confirms that the vector Hind III site (in the TcR 

gene) is 1.2kb from the Eco Ri cloning site, so that the Hind III 

site within the 2.2kb Eco RI insert must be 1.7kb from this site in 

pGH-4. 	The position of this asymmetrical Hind III site in the 2.2kb 

Eco RI fragment, correlates well with the Eco Ri, Hind III double 

digestion of 'kGH16 which yields a 1.7kb fragment and a fragment of 

approximately 0.5kb. 

Barn Hl digestion also yields two fragments, one of 1.6kb 

and one of 6.6kb (Fig. 4.6). 	Barn Hi, Eco RI double digestion of 

pBR325 (Fig. 4.6) confirms that the vector Barn Hi site (in the TcR 

gene) is 1.5kb from the Eco RI cloning site, and therefore there is a 

Barn Hi site in the 2.2kb Eco Ri insert approximately 0.1kb from the 

Eco RI site. 	Lutkenhaus, Wolf-Watz and Donachie (1980) map the Barn Hi 

site near to the C-terminal end of the ddi gene, and this defines the 

orientation of the 2.2kb Eco R1 fragment in pGH-4. 	According to the 

data of Lutkenhaus and Wu (1980), ftsA would be transcribed in pGH-4 

R 
away from the Tc gene through the Hind III within the DNA insert in 

pGH-4 4s shown diagrammatically in Fig. .7. 

4.4 	Mapping of BglII, Kpn 1 and Pvu II Restriction Sites 

20 ug of pGH-4 was digested with Eco Ri, ethanol preipitated, 



Fig. 4.7. 	Physical map of pGH-4 

The thick line represents the 2.2Kb Eco Ri fragment which has been 

inserted into the Eco Ri site of pBR325 (thin line). 	This plasmid has 

intact genes coding for ampicillin resistance (TcR)  and tetracycline resistance 

(TcR) but does not confer resistance to chioramphenicol. 
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resuspended in water, and divided into 20 aliquots. 	Aliquot; were 

digested with various restriction enzymes and analysed by agarose gel 

electrophoresis. 	A summary of this restriction is shown in Table 4.1. 

The Bgl II, Kpnl and Pvu II sites were mapped by further restriction 

analysis. 

Bgl II site : Eco Ri, Bgl II double Jj,jestion of pGH-4 (Fig. 

4.8) yields a 6.0kb vector fragment and two other fragments of 1.0kb 

and 1.2kb. 	There is therefore an asymmetrical Bgl II site within the 

2.2kb Eco Ri fragment. 	Bgl II, Hind III ctouble digestion of PGH4 

(Fig. 4.8) defines theposition of the site more precisely, and yields 

fragments of 5.3kb, 2.2kb and 0.7kb. 	Therefore, the Bgl II site must be 

approximately 0.7kb from the Hind III site as shown in Fig. 4.9. 

Kpn 1 sites : Kpn 1 digestion of pGH-4 (Fig. 4.8) yields a 7.6kb 

fragment and a 0.6kb fragment. 	There are no Kpn 1 sites within 

pBR325 and therefore there must be at least two Kpn 1 sites within the 

2.2kb Eco Ri insert. 	Kpn 1, Hind 1.11 double digestion of pGH-4 

(Fig. 4.8) yields fragments of 5.3kb, 1.5kb, 0.8kb and 0.6kb. 	Therefore 

one Kpn 1 site is 0.8kb from the insert Hill site, and the other 1.4kb 

away,  approximately 0.3kb from the Eco Rl site (Fig. 4.9). 

Pvu II sites : pBR325 has two Pvu II sites, one very close 

and anticlockwise to the Eco Ri site (about 0.1kb) and one 2.6kb 

anticlockwise to the Eco RI site (Fig. 4.5). 	Pvu II digestion of 

pGH-4 / yields three fragments, a 4.2kb fragment, a 2.5kb fragment and 

a 1.3kb fragment. 	The 2.5kb fragment is internal to the vector 

and there must be at least one Pvu II site in the 2.2kb fragment. 	Double 

digestion of pGH-4 with Pvu II and Eco Ri (Fig. 4.8) yields four 



Fig. 4.8. 	0.8% agarose gel for restriction digestions of pGH-4 

Track 

1 
c1857 

Hind 	III + Eco Ri 

2 pGH-4 Bgi 	II + Eco Ri 

3 pGH-4 Bgl 	II + Hind III 

4 pGH-4 Kpn 1 

5 pGH-4 Kpn 1 + Hind III 

6 pGH-4 Pvu II 

7 pGH-4 Pvu II + Eco Ri 

Sizes oft 
1857

Hind III, Eco Ri fragments are 21.7kb, 5.24kb, 5.05kb, 

4.21kb, 3.41kb, 1.98kb, 1.90kb, 1.57kb, 1.32kb, 0.93kb, 0.84kb, 0.58kb. 

Track 4 was run on a gel separate from these markers. 
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Table 4.1. 	Restriction enzyme sites in 2.2Kb Eco Ri fragment 

Restriction enzyme No. of sites in 2.2Kb EcoRl 	fragment 

BamHi 1 

Bgl 	II 1 

Hind III 1 

Kpnl 2 

Pvu II 2 

Hae II several 

Taq 1 many 

Msp 1 many 

Sau 3A many 

Sal 	1 none 

Sma 1 none 

Sac 1 none 

Pst 1 none 

Xho 1 none 



Fig. 4.9. 	Restriction endonuclease map of the 2.20 Eco RI restriction fragment 

The fragment is represented so that the orientation is the same as it is 

in the bacterial chromosome, with fts A being transcribed towards the terminus. 

The position of the ftsA is not exact. 



ftsA 

EcoRl 	Kpn1I 	 Kpn I 	Bq1  II 	 Hind III 	 Eco RI 

BumHI 	 PvulI 	PvuIi 

Kb 
1.0 	 2.0 

0.5 	 I 	 1.5 

Fig &9 



55. 

fragments, one of 3.3kb, one of 2.5kb, one of 1.2kb and one of 0.9kb. 

The 2.5kb Pvu II fragment is not cleaved by Eco Ri as expected, but the 

4.2kb and 1.3kb fragments are cleaved. 	As one Pvu II site in the vector 

is 0.1kb from the Eco Ri site, the 1.3kb Pvu II fragment must be cleaved 

by Eco RI to yield the 1.2kb Eco RI-Pvu II fragment. 	There is therefore 

a Pvu II site in the 2.2kb Eco Ri fragment, 1.2kb from the left most 

Eco Rl in pGH-4. 	A 0.9kb fragment is also present in the Eco-Rl-Pvu II 

double digest, and this suggests that there may be two Pvu II sites 

close together near the BGl II site. 

The restriction mapping with agarose gel electrophoresis cannot 

easily resolve two restriction sites that are very close together 

(E.g. within 50bps). 	The sites identified here will however be 

described as single restriction sites, unless any contradictory 

evidence is obtained to suggest that any of them are actually double 

sites. 	It should also be noted that with this type of mapping, 

the smaller fragments (1.0kb and less) can only be sized approximately, 

and polyacrylamide gels would have to be used if it was desirable 

to size these fragments more accurately. 

4.5 	Complementation of fts mutants with pGH-4 

pGH-4 was transformed into TOE 1 (ftsQt5) and TKF12 (ftsAts) 

and tetracycline, ampicillin resistant clones selected on agar at 30°C. 

Transformants from each strain were checked for the presence of the 

plasmid by agarose gel electrophoresis of Birnboim preparations. 

Transformants were streaked out on selective agar plates and incubated 

at 300C and 42°C, and also examined microscopically in expontially 

growing cultures (in nutrient broth, ampicillin) at 30°C and 42°C. 
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TKF12 pGH-4 grows well on agar at both 30°C and 42°C, and in liquid 

culture grows as normal sized cells at both temperatures. 	pGH-4 

therefore transduces the ftsA marker. 	TOP pGH-4 grows well at 30°C 

on selective agar plates, but very poorly at 420C. 	In liquid 
at3oC 	 (call 

culture, TOE1 pGH-4 is physiology similar to TOE1, with poor cell 

separation. 	At 420C, TOE1 pGH-4 grows as long filamentous cells 

with some visible septa, and some normal sized cells. 	pGH-4 

therefore appears to slightly improve cell division in TOE 1 at the 

restrictive temperature but complements the mutation very poorly. 
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CHAPTER 5 

Transcription and Complementation analysis of the 2.2kb Eco RI Fragment 

5.1 	Introduction 

The 2.2kb Eco Rl fragment carries at least two structural genes 
fr fi 

andtheir promoters, ftsQ and ftsA. 	Lutkenhaus and Wu (1980) determined 

that the control region and N-terminal end of the ftsZ gene is also 

present, and suggested that there may be an additional ftsZ promoter or 

a control site within the ftsA gene, on the N-terminal side of the Hind 

III site. 

The 2.2kb Eco Rl fragment was cloned into a plasmid where 

the promoters could be recognised by transcriptional fusion to an 

assayable product. 	Deletion derivatives were constructed so that 

each promoter on the fragment could be identified, and the position 

of the genes better defined. 

The recently developed KO system (McKenney, Shimatake, Court, 

Schissner, Brady and Rosenberg, in press) was used for constructing in 

vitro genetic fusions. 	In this system, plasmid and phage vectors have 

been constructed so that restriction fragments can be inserted, and 

promoter or terminator activity assessed by its influence on the 

galactokinase (gal K) gene. 	For studying the 2.2kb fragment and 

the fts genes it is desirable to use both the single copy phage systems 

and the multicopy plasmids systems, although the phage system is not 

yet available foruse, and therefore in this study, only the plasmid system 

has been used, in particular pKO-1 (Fig. 5.1). 



Fig. 5.1 	Diagram of pKO-1 

pKO-1 (3.9kb) contains single sites for Eco Ri, Hind III and 

Sma 1 into which DNA fragments can be insertedgalK is expressed only 

weakly in pKO-l. 	The 150bp leader sequence and translation stop codons 

serve to prevent polar effects on galK expression, so that galK activity is 

equal to upstream promoter activity. 	The Pvu II site of pBR322 has been 

destroyed by cloning in galK. 	The Eco Ri-Hind III fragment (290bp) is 

derived from the 2.0 gene. 
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The origin of replication and ampicillin resistance gene in 

pKO-1 are derived from pBR322, the galK gene and its leader sequence 

from E. coli and the 290bp Eco Rl-hind III fragment from the 10 gene. 

The entire nucleotide sequence of this plasmid is known apart from about 

700bps internal to the galK gene. 	A galK strain carrying pKO-1 is white 

when growing on MacConkey galactose plates)  as the galK gene in pKO-1 is 

only expressed very weakly. 	Restriction fragments that carry promoters 

can be inserted into the unique Eco Rl, Hind III or Sma I sites, so that 

they now express the galK gene, and recognised as red colonies when 

harboured in a galK strain growing on MacConkey galactose plates. 

This system has specifically been designed so that neither transcriptional 

nor translational polarity affects the expression of galK, and the 

assajab1elevel of galactokinase is equal to the strength of the 

promoter. 

Translational polarity is avoided by the introduction of 

translation stop codons in all three reading frames upstream of the 

galK gene. 	Ribosomes that initiate translation on the mRNA synthesised 

from within the cloned fragment approach the galK gene, and 

the galK translation initiation sequence is free for ribosome binding. 

Transcriptional polarity has also been avoided in the pKO system. 

The galK gene in vivo is located within a high molecular weight 

transcript (gal E, T and K), and McKenney et al (1981) reasoned that the 

natural boundary region between gaiT and galK ensures that galK is 

expressed independently from upstream RNA structures. 	For this reason 

the 150bp leader sequence to the galK gene was kept intact in the 

construction of pKO-l. 	McKenney et al (1981) inserted AP at different 
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distances from the galK gene and demonstrated that upstream mRNA 

structures will not influence the expression of galK. 

The pKO system has the additional advantage that galK can be 

both positively and negatively selected as a genetic marker. 	pKO-1 will 

not complement a host strain with a gal ETK genotype so that there 

is no growth on minimal agar containing galactose as sole carbon source. 

If the vector carries a promoter and expresses the galK gene then the 

cells can grow to form a colony. 	This positive selection can be used to 

isolate "up promoter mutations which activate promoter function 

(McKenney et al. 1981). 

A strain with a gal E
- 
T
- + 
K phenotype does not grow in the 

presence of galactose due to the accumulation of the toxic intermediate 

galactose-1-phosphate. 	A recombinant pKO plasmid that expressed 

galactokinase in a gal ETK host will therefore cause cell death if 

grown in the presence of galactose. 	This negative selection can be used 

to select for "down" promoter mutations which inactivate the promoter 

function (McKenney etal.1981). 

Other plasmids, such as pKO-4, pKO-5, pKO-6 and pKO-7 

are also available which have other unique restriction sitesfor cloning 

promoters and extend the diversity of the pKO system. 	Plasmids are also 

available that contain known promoters cloned into pKO plasmids (such as 

pKG1800), and these can be used for cloning and recognising transcriptional 

terminators 	(McKenny etal.198l). 	None of these plasmids have yet 

been used for the analysis of the 2.2kb Eco Ri fragment other than 

pKO-1. 
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Several host strains are available for use with the pKO 

system. 	The two used in this work are C600K, a galK derivative of 

C600, and NlOO a galK strain that is also recA 

5.2 	Construction of pKO recombinant plasmids 

5.2.1 	Construction of pGH106 and pGH106/A 

pGH-4 was digested with Hind III, ligated with Hind III 

digested pKO-1 and ampicillin resistant clones recovered by transformation 

into C600K. 	About 5% of clones were red on MacConkey galactose 

plates. 	Birnboim preparations of eight of these clones were digested 

with Hind III and separated by agarose gel electrophoresis. 	A clone 

that yielded a 3.9kb fragment and a 2.9kb fragment (Fig. 5.2) was 

then digested with Eco Ri to yield a 1.5kb fragment and a 5.3kb fragment 

(Fig. 5.2). 	This plasmid was designated pGH106 (Fig. 5.3). 	As 

Fig. 5.3 shows, in p01-1106, the ftsA gene is transcribed towards the galK 

gene. 

The pBR325 moiety and the 290bps Eco Ri-Hind III fragment were 

removed from pGH106 by digesting with Eco Ri, ligating in a diluted 

solution (10 ug/ml DNA) and ampicillin resistant clones recovered by 

transformation into C600K. 	All clones were red on McConkey galactose 

agar plates. 	Birnboim preparations of four clones were digested with 

Eco RI and the DNA fragments separated by agarose gel electrophoresis. 

All four clones had lost the 1.5kb Eco RI fragment, and one of these was 

designated pGH106/A (Fig. 5.2 and Fig. 5.3). 	This plasmid now contains 

only the 1.7kb Eco Ri-Hind III fragment and the 3.6kb pKO-1 vector 

Eco Rl-Hind III fragment (Fig. 5.2). 
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Fig. 5.2 	0.8% agarose gel of Hind III and Eco Ri restriction digests of 

pGH-4, pKO-1, pGH106, pGH106/A, pGH110, pGH203 

Track 5 

1 C1857 

2 pGH-4 

3 pKO-i 

4 pGH1O6 

5 pGH1O6 

6 pGH1O6/A 

7 pGH1 06/A 

8 pGH11O 

9 pGH11O 

10 pGH2O3 

ii pGH2O3 

C1  Hind III marker fragments are 23.6kb, 9.64Kb, 6.64Kb, 4.340, 2.260, 1.980, 0.56Kb. 

Sizes of relevant fragments are shown in Kb. 	Tracks 6 and 7 were run on a gel separate from 

these markers. 
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5.2.2 	Construction of pGH1I0 

As described in chapter 4, the 2.2kb Eco Ri fragment contains 

a Barn Hi and a BglII site, separated by about 0.9kb. 	Barn Hi recognises 

the hexanucleotide sequence GGATCC, and BglII the hexanucleotide 

sequence AGATCT, although both leave a GATC 5' extension after cleavage. 

These sites may be ligated together to form a hybrid Barn H1-Bgl II site 

AGATCC which is not recognised by either enzyme. 

The Barn H1-Bgl II 0.9kb fragment was removed from pGH106/A 

by restricting with both enzymesand ligating in a dilute DNA concentration 

r 
(10 ug/rnl). 	Arnpicillin resistant clones were recovered by tansforrnation 

into C600( and plating onto MacConkey galactose agar plates. 	Birnboim 

preparations of four clones were digested with Eco Ri and the products 

separated by agarose gel electrophoresis. 	All clones yielded only a 

4.4kb fragment. 	One of these was designated pGI-IliO (Fig. 5.2 and 

Fig. 5.3). 	Eco Rl-frInd III double digestion of pGHllO yields a 3.6kb 

vector fragment and a fragment of approximately 0.8kb (Fig. 5.2) showing 

that the 1.7kb Eco Ri-Hind III site has been reduced in size by about 

0.9kb. 

5.2.3 	Construction of pGH203 

To preparea purified sample of the 2.2kb Eco Ri fragment, 

approximately lOOug of pGH-4 DNA were digested with Eco Ri, and loaded 

onto a 10-20% sucrose gradient. 	After spinning for 24 hours at 22Krpm 

in an AH627 swing out rotor (10°C ), the gradient was fractionated 

into 250i11 fractions from the bottom of the tube. 	lOul of each fraction 

were run on an agarose gel to determine which fractions contained 

the 2.2kb Eco Ri fragment. 	These fractions were pooled, and dialysed against TE. 



Fig. 5.3 	Physical maps of pGH106, pGH106/A, pGH110 and pGH203 

Bacterial DNA is shown as an open box, and vector DNA as single 

lines. 	DNA that has been deleted is shown as a gap. 	Restriction 

Endonuclease sites for Hind III (v), Eco Ri (s). 	Barn Hi () and Bgi II 

() are shown. 	The direction of transcription of the ampicillin 

resistance gene (ApR)  and gaiK are shown with respect to the bacterial 

insert. 
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Fig. 5.4 	Diagramatic representation of construction of pGH203 

The top part of the diagram shows a 0.8% agarose gel of manipulation 

with the 2.20 Eco Ri fragment. 

Track 

1 	 2.2Kb Eco RI fragment (purified) 

2 	 Ligated fragment 

3 	 Ligated fragment re-restricted with Eco RI 

4 	 Ligated fragment re-restricted with Hind III 

The lower part of the diagram illustrates the circularisation of the 

2.2Kb Eco Rl and re-restriction with Hind III to create a 2.20 Hind III 

fragment, with a single Eco Ri site internal to it. 	This rearranged 

fragment was ligated with Hind III cleaved pKO-1 to construct pGH203. 	The 

direction of transcription of the ampicillin resistance gene (APR) and galK 

are shown in pGH203 with respect to the bacterial insert (open box) 
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The DNA was ethanol precipitated, dried and resuspended in 400u1 TE. 

A 40u1 aliquot of the purified Eco Rl fragment was ligated by 

itself for 4 hours at 15°C and then divided into four aliquots. 

One aliquot was digested with Eco Ri and one with Hind III and the 

products separated by agarose gel electrophoresis, along with one 

undigested aliquot, and unligated DNA (Fig. 5.4). 	Both Eco RI and 

Hind III digested aliquots yielded predominantly a 2.2kb fragment 

suggesting that most of the purified fragments had circularised upon 

ligation. 

The remaining aliquot of ligated fragment was digested with 

Hind III 	and ligated with Hind III digested pKO-1. 	Ampicillin resistant 

clones were recovered by transformation into C6001(. 	Birnboim 

preparations of four red clones were digested with Hind III and the 

fragments separated by agarose gel eletrophoresis. 	All of these clones 

yielded a 3.9kb vector fragment and a 2.2kb fragment (Fig. 5.2). 	One 

of these clones was designated pGH203 (Fig. 5.3). 	Eco Ri restriction of 

pGH203 yields a 5.3kb fragment and a 0.8kb fragment (Fig. 5.2). 

Fig. 5.4 shows a diagrammatic representation of the construction of 

pGH2O3. 

5.2.4. 	Construction of pGH301 and pGH300 

lOui of the 2.2kb Eco Ri fragment preparation was ligated 

with Eco RI digested pKO-1 and ampicillin resistant clones recovered 

by transformation into C600K. 	Birnboim preparations of four red 

clones were digested with Eco Ri and the fragments separated by agarose 

gel electrophoresis. 	One clone that yielded a 3.9kb vector 



Fig. 5.5 	0.8% agarose gel of Hind III and Eco Rl restriction digestions of pGH301, 

pGH300, pGH305, pGH360, pGH370 and pGH350 

Track 

1 C1857 Hind 	III 

2 pGH301 Eco Rl 

3 pGH30I Hind 	III 

4 pGH300 Eco Rl 

5 pGH300 Hind 	III 

7 pGH305 Eco Rl 

pGH305 Eco Rl 	+ Hind III 

pGH360 Eco Rl 

r 
pGH370 Eco Rl 

10 pGH350 Eco Rl 

ii pGH350 Hind 	III 

12 pGH350 Eco Rl 	+ Hind 	III 

2C1857 Hind III marker fragments are 23.60, 9.64Kb, 6.64Kb, 4.34Kb, 2.260, 1.980, 0.56Kb 

Sizes of relevant fraQments are shown in Kb. 
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fragment, and a 2.2kb inserted fragment was designated pGH301 (Figs. 5.5 

and 5.6). 	Hind III digestion of pGH301 (Fig. 55) yields a 5.3kb 

fragment and a 0.8kb fragment, and from the restriction map in 4.9 must 

be inserted so that ftsA is transcribed towards galK. 	The Hind III 

digest also yields a 3.9kb fragment, so that in pGH301 there must be 

two copies of the vector present, in the same orientation. 

Birnboim preparations of 10 other randomly chosen clones 

were digested with Eco Rl and the fragments separated by agarose 

gel electropheresis. 	One of these yielded a 3.9kb fragment and 

a 2.2kb fragment, and on Hind III digestion yielded fragments of 

4.1kb and 2.0kb (Fig. 5.5). This 	was designated pGH300. 	The 

2.2kb inserted fragment in this plasmid is inserted in the opposite 

orientation to that in pGH301 (Fig. 5.6). 

5.2.5 	Construction of pGH305 

pGH301 was digested with Barn Hl and Bgl II, ligated in 

diluted DNA solution (bug/ml) and ampicillin resistant clones 

recovered by transformation into NbOO. 	All clones were red on 

MacConkey galactose agar plates. 	Birnboim preparations of four red clones 

were digested with Eco RI and the fragments separated by agarose gel 

electrophoresis. 	One of the clones that yielded a 3.9kb fragment 

and a 1.3kb fragment was designated pGH305 (Fig. 5.5 and 5.6). 

Hind III, Eco Rb double digestion yields fragments of 3.6kb, 0.8kb, 0.5kb 

and 0.3kb as would be predicted from deletion of the Barn H1-BglII 

fragment. 
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5.2.6 	Construction of pGH360 

The restriction analysis in chapter 4, showed that there 

are two Kpn 1 restriction sites in the 2.2kb Eco Ri fragment. 	pKO-1 

has no Kpn 1 restriction sites, and the 0.6kb Kpn 1 fragment from the 

2.2kb Eco Ri fragment can be removed by restriction and religation. 

pGH301 was digested with Kpni and religated at a DNA concentration 

of bug/mi. 	Ampicillin resistant clones were recovered by transformation 

into NbOO. 	All clones were red on MacConkey galactose plates. 	Birnboim 

preparations of four clones were digested with Eco Ri and the fragments 

separated by agarose gel electrophoresis. 	One of these clones yielded 

a 3.9kb vector fragment and a 1.6kb fragment. 	This clone was designated 

pGH360 (Fig. 5.5 and Fig. 5.6). 

5.2.7 Construction of pGH370 

The restriction analysis in chapter 4 and the sequence 

analysis in chapter 7 has shown that there are two Pvu II sites very close 

to the centre of the 2.2kb Eco Ri fragment. pKO-1 does not contain 

any Pvu II sites and therefore the small (150bps) Pvu II fragment 

can be removed from the 2.2kb Eco RI fragment by restriction with Pvu II 

and reiigation. 

pGH301 was digested with Pvu It and then religated at a DNA 

concentration of bug/mi. 	Ampiciilin resistant clones were recovered by 

transformation into NlOO. 	All clones were red on MacConkey, galactose 

plates. 	Birnboim preparations of three of these, were digested with 

Eco Rb and the fragments separated by agarose gel electrophoresis. 

One of these clones yielded a 3.9kb vector fragment and a 2.1kb fragment. 

This plasmid was designated pGH370 (Fig. 5.5 and Fig. 5.6). 



Fig. 5.6 	Physical maps of pGH301, pGH300, pGH305, pGH360, pGH370, pGH350 

Bacterial DNA is shown as open boxes and vector DNA is single lines. 

DNA that has been deleted is represented as a gap. 	Restriction endonuclease 

sites for Rind III (v), Eco Ri (A), Barn Hl (4), BglII  (4), Pvu II (j) 

and Kpnl ( ) are also shown. 	The direction of transcription of the arnpicillin 

resistance gene (APR)  and gaiK are shown with respect to the bacterial insert. 
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Fig. 5.7 	Densitometry trace of Hind III, Eco RI double restriction digest 

of pGH35O 

The Jensitometry trace of the Hind III, Eco Ri double digestion 

(Fig. 5.5) shows three peaks, one for the 3.6Kb fragment, one for the 

0.50 fragment, and one for the 0.3Kb fragment. 	However the tops of the 

peaks cannot be joined by a straight line (as they would be, if in equimolar 

ratios), indicating that there is more than one copy of the 0.30 fragment 

in this digestion. 
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5.2.8 	Construction pGH350 

pGH301 was digested with Hind III, and then with Pst 1 to 

destroy the vector molecules. 	These fragments were ligated with 

Hind III digested pKO-1 and ampicillin resistant clones recovered 

by transformation into(C600(). Birnboim preparationsof four red clones 

were digested with Hind III and the fragments separated on an agarose 

gel. 	All these clones yielded a 3.9kb vector fragment and a 0.8kb 

fragment (Fig. 5.5). 	Of these was designated pGH350. 	This clone 

yields a 0.8kb fragment on digestion with Eco Ri (Fig. 5.5). 

Double digestion of pGH350 with Eco Rl and Hind III yields only the 

3.6kb vector fragment and 0.5kb and 0,3kb fragments. 	Therefore the 

0.8kb Hind III fragment has an Eco RI site within it, and the 0.8kb Eco Ri 

fragment has a Hind III site within it. 	The structure of pGH350 as shown 

in Fig. 5.5 is confirmed by the densitometer trace which shows that the 

fragments are not in equimolar ratios (Fig. 5.7), the 0.3kb fragment 

being present more than once in the Hind ILl, Eco Ri d6uble dfgest. 

5.3 	Complementation analysis of pKO recombinant plasmids 

pKO-i and the recombinant piasmids described above were 

transformed into TOE 1 and TOE 13, selecting for ampicillin resistant 

clones at 30°C on MacConkey galactose agar plates. 	pKO-i and pGH300 

both gave white clones, whereas all the other piasmids gave red clones, 

in both TOE 1 and TOE 13. 	This is the same colour reaction as seen 

with N100 and C600I( (Table 5.2). 

Transformants were grown at 30°C in nutrient broth with 

ampicillin, until in early exponential phase. 	An aliquot of each culture 

° was transfered to prewarmed flasks at 42C and incubated in a water bath 



Table 5.1. 	Growth ability and physiology of plasmid harbouring strains of TOE 1 and TOE 13 

at the restrictive temperature 

P1 a sm i d 
TOE 1 TOE 13 

Agar 42°C Liquid 42°C Agar 42°C Liquid 42°C 

pKO-1 - Filaments - Filaments 

pGH106/A + Normal - Filaments 

pC1H110 - Filaments - Filaments 

pGR203 + Normal - Filaments 

p9H301 + Normal + Normal 

pGH300 - Filaments + Normal 

pGH305 - Filaments - Filaments 

pGH360 - Filaments - Filaments 

pGH370 + Normal - Filaments 

pGI-1350 - Filaments - Filaments 

pGH106 + Filaments and - Filaments 
- some normal cells 



Table 5.2 Galactokinase activity in strains N100 and C600K 

harbouring plasmids 

Plasmid N100 C600K Colour 

No. Plasmid 0 0 White 

pKO-1 15.8± 	2.8 22.8 1.1 White 

pGH301 101.9 ± 0.7 167.0 26.0 Red 

pGH300 0.6 0.2 0.5 0.7 White 

pGH106/A 71.3 9.4 104.4 47.6 Red 

pGH110 50.1 ±16.0 78.4 28.5 Red 

pGH305 95.3 11.1 112.8 29.4 Red 

pGH350 33.1 3.6 51.9 5.3 Red 

pGH360 130.4 ±298 - Red 

pGH370 133.5 ±50.7 170.9 ± 15.9 Red 

Each activity is the average of two separate  assays. The standard 

deviation is shown. The colour of either strain harbouring the plasmids 

growing on MacConkey galactose plates is shown in the right-hand 

column. 
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fora further three hours. 	All cultures were examined microscopically. 

The results are shown in Table 5.1. 	Transformants were also streaked 

out onto oxoid nutrient agar plates with ampicillin and incubated at 420C, 

incubated overnight and then checked for complementation, as growth at the 

restrictive temperature. 	The results are shown in Table 5.1 

5.4 	Galactokinase assays of pK0 recombinant plasmids 

Stationary phase cultures of NlOO, and C600K strains harbouring 

pKO recombinant plasmids were diluted lin 50 into fresh nutrient broth 

containing ampicillin, and incubated at 37°C with shaking, until 

0D650  0.3-0.5. 	lml samples were removed from each and assayed as in 

2.20. 	Each culture was assayed on two separate occasions. 	The 

average of the two results for each culture, and the colour of the 

strains on MacConkey galactose plates, are shown in Table 5.2. 

5.5 Discussion 

Complementation analyses with the deletion derivatives of 

the 2.2kb Eco Rl fragment has defined more precisely the location of 

the ftsQ gene. 	pGH370 has a small deletion within it of about 150bps, 

and this results in loss of the ability to complement ftsA, without 

affecting ftsQ. 	It is likely then that ftsQ lies between the left most 

Pvu II site and Eco Rl site and that the deletion in pGH 370 intercpts 

the integrity of the ftsA structural gene. 	Assuming an average amino 

acid weight of 115 daltons, the maximum size of a protein that could 

be synthesised from the Eco Rl-Pvu II fragment (0.9kb) is about 

34.5 kilodaltons. 	pGH360 also fails to complement ftsA, so the ftsA 

gene probably extends further, past the Kpnl site that is close to the 



Fig. 5.8 	Graph showing comparison between plasmid galactokinase activities 

in strain C600K, and plasmid galactokinase activities in N100 
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If the ftsQ gene lies in this fragment of DNA, then why 

does pGH300 fail to complement the ftsQ mutation, and pGH106 

complement very badly (as does pGH-4), when pGH301 complements very 

well? 	One possible explanation is that part of the ftsQ gene is absent 

from the Eco RI fragment, so that the DNA sequence of the vector 

adjacent to the cloning site determines whether or not an active ftsQ 

product is synthesised.As the 2.2kb Eco RI fragment complements TOE 1 

when cloned in the Xvectors, as well as the plasmid vectors would suggest 

that only a small part of the gene is missing, more probably from the 

control region rather than from the structural gene itself. 	However, 

the fact that pGH300 complements ftsA but not ftsQ suggests strongly that 

these two genes are separately expressed. 

Table 5.2 shows the amount of galactokinase (in units) 

produced by each fusion plasmid , with the standard deviation between 

two results. 	The assays in C600K are consistently higher than in 

N100. 	(The linear relationship in Fig. 5.8) but with a higher 

standard deviation, probably due to recombination between plasmids 

and the chromosome, which doesnot occur in the recA strain N100. 	It 

is therefore only these assays that will be further discussed. 

The standard deviations in these results, and in particular 

pGH360 and pGH370, indicate that the assay is rather variable. 	The 

results would be more reliable if an average was taken of about ten 

independent assays, an exercise which time did not permit in this 

study. 	However, there are some interesting points about these fusion 

assays. 
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pGH300 consistently gives very little galactokinase activity, 

and a level below that of the pKO-1 vector. 	There is therefore no 

transcription from the 2.2kb Eco Rl fragment through the Eco Rl site 

nearest to the galK gene in pGH300. 	The residual galK activity in 

pKO-1 must therefore arise upstream of the Eco Ri site, and not from 

DNA between the Eco Rl site and galK gene. 	This residual activity in 

pKO-1 is presumably reduced in pGH300 due to opposing transcription of the 

ftsA gene. 

pGH350 has about twice the galactokinase activity of pK0-l. 

As the location of any terminators in the 0.5kb Hind Ill-Eco Ri is not 

known, it is unclear whether the activity in pGH350 is solely due to an 

inserted promoter, or a combination of an inserted promoter and the 

residual pKO-i activity. 	However, there must be a promoter on this 

0.5kb Hind Ill-Eco Rl fragment. 	Lutkenhaus and Wu (1980) found that 

transducing phage carrying the ftsZ gene with this Hind Ill-Eco Rl fragment 

(but no DNA anticlockwise to the Hind III), complemented ftsZ 

mutants only under certain conditions, and synthesised the 45 kilodaiton 

gene product very poorly. 	It is likely that the promoter identified 

on the 0.5kb Hind Ill-Eco Ri fragment is responsible for this expression 

of the ftsZ gene. 

Lutkenhaus and Wu (1980) also found that the addition of 

DNA anticlockwise to the Hind III site improves the expression of the 

ftsZ gene. 	The galactokinase activity in pGH301 is approximately 

three times the activity measured in pGH350, although again it is not 

known if the residual pKO-i activity is contributing to this. 	The 

increased transcriptional activity in pGH301 above pGH350 could be 

either because DNA sequences anticlockwise to the Hind III site are 



stimulating the promoter downstream, on the 0.5kb Rind Ill-Eco Ri 

fragment, or because transcripts from upstream in the DNA insert are not 

terminated in the 2.2kb Eco Ri fragment, and galactokinase activity 

in pGH301 results from several different transcripts. 

pGH370, pGH360 and pGH305 all have deletions in the 2.2kb 

Eco Ri fragment, which do not significantly decrease the galactokinase 

activity from that in pGH301. 	pGH360 and pGH370 have rather high 

galactokinase activities, but the standard deviation is also high, so 

the increase in activity above that in pGH301 may not be significant. 

pGH305 has a larger deletion than either pGH360 or pGH370, with 

approximately 0.9kb deleted between the Barn Hi and Bgi II site. 

Additional activity above that in pGH350 must therefore arise from the 

DNA fragments Eco Ri-Barn Hi (approximately 0.1kb) and Bgl 11-Hind III 

(0.7K9. 	This is confirmed by promoter activity in pGHilO which has only 

these two fragments inserted into pKO-l. 	The ftsA promoter (provided 

that ftsA is transcribed separately to ftsQ, as is suggested) is probably 

absent from pGHllO, and promoter activity must arise from either within 

the ftsA structural gene (Bgl II-Hind III fragment) or from the Eco Ri 

Barn Hi fragment, and the question therefore arises as to whether the 

ftsQ promoter is on this 0.1kb fragment. 

pGH106/A my 	h.ve more promoter activity than 

pGHliO. 	This would suggest that there maybe an additional promoter on 

the Barn Hl-Bgl II fragment, possibly the ftsA promoter although this 

is considered to be rather weak evidence, and the Bam-Bgl II fragment will 

have to be cloned to assess its promoter activity. 

The following conclusions can be made about transcription of the 

fts genes: 



There is a promoter on the 0.5kb Hind Ill-Eco Ri fragment, that 
I - 

reads through the Eco Ri and this is most likely the ftsZ promoter. 

There is a promoter 	on the 0.1kb Eco Rl-Bam Hi fragment, 

on the 0.7kb Bgl II-Hind hil fragment which is internal to the 

ftsA structural gene or 	 NA  

Transcription through the Eco RI site in ftsZ probably results from 

several different transcripts. 	No evidence has been found to 

suggest that there is a control site within the ftsA gene that 

stimulates the ftsZ promoter. 

It is essential for similar fusions to those described above 

to be constructed in the single copy system when this is available, 

in order to observe any copy number effects and titration of any 

factors that are essential for the expression of these genes. 
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CHAPTER 6 

Protein Synthesis directed by pKO recombinant plasmids 

6.1 	Introduction 

Lutkenhaus and Wu (1980) observed six gene products which 

were synthesised from the chromosomal insert in 216-2. 	Each product 

was assigned to a gene by analysing protein synthesis and complementation 

patterns of 216-2 deletion derivations. 	Other gene products may 

be synthesised from the 116-2 bacterial insert which cannot be observed 

in the phage systems, either because they are small and cannot be 

discerned from phage directed proteins, or are too weakly expressed 

from their own promoters to be observed on infection of a homoimmune 

lysogen. 	An example of the latter, is the 30 kilodalton protein 

identified by Lutkenhaus and Wu (1980) as the ddl gene product. 	This 

protein cannot be observed at all on infection of '116-2 into a homoimmune 

lysogen (Lutkenhaus and Wu 1980). 

We reasoned that to identify the ftsQgene product these problems 

may be overcome by using the minicell system for identifying plasmid- 

coded proteins. 	Minicells produced by mutant strains of E. coli were 

originally characterised by Adler et al. (1967) as small inviable DNA- 

less cells. 	Levy (1971) and Roozen et al (1971) demonstrated that 

minicells are capable of RNA and protein sy nthesis if the strain 

harbours a plasmid that is segregated into the minicells. 	Minicells 

can be easily separated from their parental cells by sucrose gradient 

centrifugation (Frazer and Curtis 1975; Levy 1974) and the proteins 

that are being synthesised, radioactively labelled. 	A preincubation 
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period allows degradation of existing chromosomal mRNA, so that all protein 

synthesis is plasmid coded. 	It was hoped that a comparison of proteins 

synthesised by the recombinant plasmids described in chapter 5, and 

the vector, would reveal the ftsA gene product, which has been identified 

as a 50 kilodalton protein (Lutkenhaus and Donachie 1979), and the 

previously unidentified ftsQ gene product. 	An analysis of deletion 

derivatives of the 2.2kb Eco Ri fragment should help to discriminate 

these products from other vector-coded products. 

6.2 	Preparation and labelling of minicells 

Plasmid DNA of pKO-1, pGH301, pGH300, pGH106/A pGH360 and 

pGH203 was transformed into the minicell producing strain DS410, and 

transformants selected on nutrient agar plates containing ampicillin. 

Minicells from these transformants and from the strain DS410 without 

a plasmid, were separated from the parental cells by three rounds of 

sucrose gradient centrifugation as described in chapter 2. 	Minicell 

preparations were labelled with 35S-methionine and the proteins separated 

by electrophoresis on a 7-20% gradient polyacrylamide gel. 	The labelled 

proteins were visualised by autoradiography, and one such autoradiogram 

is shown in Fig. 6.1. 

6.3 Discussion 

All the minicell preparations that contain a plasmid synthesise 

a 30 kilodalton protein, a 32 kilodalton protein and a 27 kilodalton 

protein. 	The 30 kilodalton protein is p-lactamase, product of the 

ampicillin resistance gene (Dougan and Sherratt 1977), the 32 kilodalton 

protein a precursor of this, and the 27 kilodalton protein a degradation 



Fig. 6.1 	7-20% gradient polyacrylamide gel separating proteins synthesis 

in minicells 

The minicell producing strain DS410, and DS410 strains harbouring 

plasmids were labelled with 35S-methionine and the labelled proteins separated 

by polyacrylamide gel electrophoresis. 

Track 

1 DS410 pKO-1 

2 DS41O 

3 DS410 pGH301 

4 DS410 pGH106/A 

5 DS410 pGH203 

6 DS410 pGH360 

7 DS410 pGH300 

Unlabelled marker proteins were run in tracks either side of 

the labelled samples, and the sizes of relevant proteins calculated, and 

shown in kilodaltons. 
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Fig 6.1 



72. 

product. 

A 43 kilodalton protein is synthesised in the plasmid-containing 

minicells preparations, although rather less from pGH300 than the other 

plasmids, and it is probably the galK gene product, which has previously 

been identified as a 40 kilodalton protein (Lewin, Gene Expression Vol. 1). 

It is known from the transcription analysis that galK is only weakly 

transcribed in the pKO-1, although there appears to be a lot of the 

43 kilodalton protein in this sample. 	It is possible that the galK 

product is very stable and accumulates throughout the labelling period. 

pGH300 transcribed galK weakly, if at all, and this correlates with the 

43 kilodalton protein being the galK product. 

pGH301 and pGH300 also synthesise a 48 kilodalton protein, 

which is not synthesised by pKO-1, pGH106/A, pGH203 or pGH360. 

pGH301 and pGH300 both complement ftsA mutants which the other plasmids 

do not, and it seems likely that the 48 kilodalton protein is the ftsA 
U,'s. Les4 )112'( 

gene product. 	Darby (Ph.D thesis) also identified the ftsA gene product as a 48 

kilodalton protein, and the size difference. to the 50 kilodalton protein 

identified by Lutkenhaus and Donachie (1979) is probably a function of the 

different gel systems and marker proteins that were used. 

pGH106/A and pGH203 should both synthesise a trunkated or 

hybrid ftsA product, as in both plasmids the ftsA gene is inteupted at the Hind 

III site at the C-terminal end. 	This hybrid protein would terminate 

at one of the stop codons prior to the galK gene, so that it would be 

smaller than the ftsA gene product. 	It is possible that the hybrid 

protein is masked by other proteins in the gel such as the galK product. 

Both pGH300 and pGH301 synthesise very little of the ftsA product 

I 	 I ' ft U 	 of 	 1p'/èi 	c 
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in comparison to the galK and -lactamase products. 	There are several 

reasons why this may be so: 

a) the ftsA promoter may be very weak, 

chromos°mal macromolecular synthesis may be necessary for synthesis 

of ftsA product, 

translation of the ftsA gene may be very inefficient, 

the high plasmid copy number may titrate out factors that are 

required for expression of the ftsA gene, so that only a few 

copies of the gene are expressed, 

e) the ftsA product may be very unstable. 

It is not yet clear which of these factors is affecting 

expression of the ftsA gene. 

There are no additional proteins produced by pGH301 and pGH106/A 

that could be the ftsQ gene product. 	However pGH203 strongly 

synthesises a 37 kilodalton protein, and less strongly a 35 kilodalton 

protein. 	The structure of pGH203 differs from pGH106/A in that the 

0.5kb Hind Ill-Eco RI fragment has been inserted at the Eco RI site of 

pGI-1106/A (Fig. 5.3), this fragment carries the ftsZ promoter (chapter 5) 

and the N-terminal part of the ftsZ gene (Lutkeraus and Wu 1980). 	The 

37 kilodalton protein may originate from within the 0.5kb fragment 

and be synthesised across the Eco Ri site to produce a hybrid ftsZ-ftsQ 

product. 

Lutkenhaus and Wu (1980) identified the ddi gene product as a 

30 kilodalton protein. 	This was deduced from the observation that the 

3.2kb Hind III of 16-2 synthesised this protein (Fig. 1.5) and that 

ddi was the only known gene on this fragment. 	This identification 
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however now comes into question as another gene ftsQ maps on this same 

restriction fragment. 	The 30 kilodalton protein is not synthesised 

from a '\transducing phage (JFL41) that carries the 2.2kb Eco Ri fragment 

(Lutkenhaus and Wu 1980), although this does not discount the possibility 

that the 30 kilodalton protein is the ftsQ gene product. 	For example, 

as discussed on chapter 5, the entire ftsQ gene may not be carried on 

this fragment, and the fragment in IJFL41 may be inserted in the 

11wrong11  orientation for the expression of the 30 kilodalton protein. 

An additional 30 kilodalton protein would not be seen in 

the minicell preparations, as the strongly expressed -lactamase is also 

30 kilodaltons, and would obscure additional proteins of the same size. 

However, the results with pGH203 are compatible with the idea that the 

ftsQ product is a 30 kilodalton protein, so that the 37 kilodalton 

would be a ftsZ-ftsQ hybrid protein. 

Experiments are in progress (in this laboratory) to separate 

the minicell proteins by 2D-electrophoresis, so that an addition 30 kilodalton 

protein 	with a different iso-electric-focusing point could be 

observed. 	Immuno-precipitation with a p-lactamase specific antibody 

could also be used, to remove the 13-lactamase, and permit observation 

of similarly sized proteins. 
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CHAPTER 7 

DNA sequencing of the 2.2kb Eco Rl fragment 

7.1 	Introduction 

The nucleotide sequence of DNA is of obvious biological 

importance. 	The position of genes can be predicted from open reading 

frames, the amino acid sequence of the proteins calculated,, and with 

the use of mutations, various control elements can be recognised. 	It 

also provides a detailed and accurate restriction map, which is 

invaluable for further genetic manipulations. 	It was reasoned, that 

with the transcriptional assays described in chapter 5, the DNA 

sequence of the 2.2kb Eco Rl fragment would prove a powerful tool in 

the determination of the control of the fts genes. 

Of the DNA sequencing methods that have developed so far, the 

most rapid for relatively large DNA fragments is the M13 dideoxy method 

developed by Sanger, and this was used to begin the sequencing of the 

2.2kb Eco Rl fragment. 	The methodology of the chain terminating reactions 

is rather involved, and will not be discussed here, as it is adequately 

described in the literature (Sanger, Nickien and Coulson 1977, 

Sanger and Coulson 1978, Smith 1980, Schreier and Cortese 1979, Anderson, 

Gait, Mayol and Young 1980, Messing, Crea and Seeburg 1981). 	The 

principle of the M13 dideoxy method, is not complicated and will be 

briefly discussed (see Fig. 7.1). 

Restriction fragments of the DNA to be sequenced are cloned 

into specially constructed/M13 vectors (M13mp2, M13mp2/Bam, Ml3mp2/Hind 

and M13mp7). 	The sites  available for cloning in these vectors are shown 



Fig. 7.1 	Diagrammatic representation of DNA sequencing, using the M13 dideoxy 

method 

Stage 1. 	Cloning into M13 and preparation of single stranded templates: 

The double stranded replicative 	 form of M13 is cleaved with a restric- 

tion enzyme, and ligated with restriction fragments of the DNA to be sequenceL 

Plaques are recovered by transfection, and then grown in liquid culture on 

a bacterial host. 	Phage are precipitated from the supernatant, with 

PEG6000, phenol extracted and the SS DNA recovered. 

Stage 2. 	Dideoxy sequencing reactions: 

A single stranded template is primed by boiling with a 26bp primer and allowing 

to cool slowly. 	The primed template is mixed with a [alpha 32P] dNTP and 

Klenow polymerase and divided into four aliquots. 	Each aliquot is 

incubated with the four dNTP's, and one of the four ddNTP's, so that each aliquot 

has a different ddNTP. 

Stage 3. 	Denaturing polyacrylamide gel electrophoresis: 

The partially sythesised, labelled DNA chains each having a common 5' 

terminus, but a base-specific 3' terminus are separated on a thin, denaturing 

polyacrylamide gel. 	The smallest DNA chains migrate to the bottom of the 

gel, whilst the longer chains migrate more slowly and remaind further 

up the gel. 
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dNTP 

primer 	
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ddTCACTAAG 
ddCACTAA G 

ddACTAAG 
ddCTAAG 

ddTAAG 
ddAAG 

ddAG 
ddG 

sequence 	3 f 	 5 1 

read* : 	GGTCACTAAG 

Fig 7.1 
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in Fig. 7.2. 	Fragments from different restriction enzyme digests are 

cloned, so that all the required DNA is represented by overlapping 

restriction fragments. 	Recombinant M13 phage are recognised as white 

plaques on XG plates, whereas the vectors form blue plaques. 	The 

filamentous phage from these recombinants can be easily prepared and 

the single stranded DNA within them rapidly purified. 	A short 

primer (26 bps) that is complementary to vector DNA close to the 

cloning sites is used to prime complementary strand synthesis from these 

single strand DNA templates using the large (Kienow) fragment of 

DNA Polymerase 1. 

A primed template is divided into four reaction vessels, each 

of which contains Kienow polymerase, the four deoxyribonucleotides 

(dCTP, dGTP, dATP, dTTP) one of which is 32P labelled, and one of 

four dideoxyribonucleotides (ddCTP, ddGTP, ddATP, ddTTP). 	These 

dideoxyribonucleotides terminate DNA synthesis when inserted into the 

elongating chain, and if the deoxyribonucleotide: dideoxyribonucleotide 

ratio is correct, then different sized 32p  labelled DNA chains will be 

synthesised, that have a common 5' end, but a base-specific 3' end. 

The four reaction mixtures containing partially synthesised chains can 

be separated by size on a denaturing polyacrylamide gel and the DNA 

chains visualised by autoradiography. 	The DNA sequence can then be 

read from the shortest chains (5' end) at the bottom of the gel to the 

larger chains (3' end) at the top of the gel (Fig. 7.3). 	The 

number of bases that can be determined is limited only by the resolution 

of the gel. 	The required DNA sequence can be obtained by overlapping 

sequence data from different M13 clones. 



Fig. 7.2 	DNA sequence around the cloning sites in M13 vectors 

M13mp2, M13mp2/Bam, M13mp2/Hind III and M13mp7 all have lac DNA 

(promoter, operator and first 145 amino acid residues of )?-galactosidase 

gene) inserted into the intergenic region between genes IV and II. 

The cloning sites in these vectors all lie within the lac DNA, so that 

insertion of DNA fragments results in a 1ac phenotype. 	The direction of 

transcription of the lac DNA is shown. 	The 3' terminus of the "universal" 

26bp primer is complementary to the lac DNA so that DNA synthesis 

proceeds towards the lac promoter. 



10  EcoRi 

lac Z transcription 	 CGGGGAATTCACTGGCCGTCGTTTTAC 	M 13 mp 2 

Barn HI 

	

GATTACGAATTCCCCGGATCCGGGGAATTCACTGGCCGTCGTTTTAC 	M13 mp 2 1 Ram 

Hin dill 

	

GATTACCAATTCCACAAGCTTGTGGAATTCACTGGCCGTCGTTTTAC 	M 13 mp 2/Hind 

Hincli 	Hincli 
EcoRi 	BarnHi Sail 	 Sail 	Sam HI 	EcoRi 

	

GAATTCCCCGGATCCGTCGACCTGCAGGTCGACGGATCCGGGGAATTCACTGGCCGTCGTTTTAC 	MI 3 mp 7 
Acci Peti Acci 

3' 	 5' 

DNA synthesis 

3,  
GTGACCGGCAGCAAAATG 	PRIMER 

Fig 7.2 



Fig. 7.3 	Sequencing gel (6% acrylamide) of Bgl 4 template 

The dideoxyribonucleotide used in each of the four aliquots of 

primed template are shown above the gel. 	This 	typical sequencing gel, 

with the sequence being read from the bottom of the gel (5') to the top 

(3'). 	This particular sequence is from the Bgl II site within the 

2.2Kb Eco RI fragment, reading towards the Barn Hl site. 



T C G A 

Fig 7.3  - 
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7.2 	Sequencing strategy 

It was decided to sequence the 2.2kb Eco Ri fragment in two 

stages. 	First restriction fragments were inserted into the M13 vectors 

using the known restriction sites, i.e. Eco Ri, Barn Hi, Bgl II and 

Hind III. 	Sequence data from these clones should yield about 600-800 

bps, and these defined clones permit the identification of which DNA strand 

has been cloned. 	To do this, different M13 clones are hybridised at 

650C, and analysed by agarose gel electrophoresis for the presence of 

double stranded DNA (which migrates slower than single stranded DNA). 

Double stranded DNA will only be formed if the two clones contain 

complementary inserted DNA (i.e. opposite strands). 

In the second stage, restriction fragments produced by digestion 

with tetranucleotide recognition restriction enzymes were cloned into 

M13 so that random sequencing could providethe remainder of the data. 

Ideally, both DNA strands should be sequenced, although this is 

particularly true for data which is obtained from the top of a 

sequencing gel, where the sequence is most liable to be misread. 

7.3 	Cloning into M13 vectors (see Fig. 7.4) 

7.3.1. 	Cloning into M13mp2 

A preparation of purified 2.2kb Eco Ri fragment was ligated 

with Eco Ri digested M13mp2, and plaques recovered by transfection into 

JM101. 	White recombinant plaques were recognised on nutrient agar 

plate with 1PTG (200ug/ml) and XG (200ug/ml). 	Avoiding the large plaques 

(which often have deletions), white plaques were picked and single 

stranded template DNA prepared from them. 	On hybridisation, two clones 



designated Ri and R7 were determined as having opposite strands cloned ,  

into them. 	These strands were arbitarily designated Ri (+) and R7 (-). 

7..2.1 Cloning into M13mp 2/Barn 

A preparation of the purified 2.2kb fragment was ligated and 

redigested with Barn Hi as described in Fig. 5.4 for the construction 

of pGH203, to produce a 2.2kb Barn Hi fragment. 	This was ligated 

with Barn Hi digested M13mp2/Bam and white plaques picked after 

transfection into JM101, and single stranded templates prepared. 	By 

hybridisation to Ri and R7 templates, two clones of each strand were 

identified amd designated Barn 1 and 2 (+), and Barn 3 and 4 (-). 

7.3.2.2 	The 2.2kb Eco RI fragment was rearranged to form a 2.2kb Bgl II 

fragment, as described above, and ligated with Barn Hi digested M13rnp 2/Barn. 

White plaques were recovered from transfection into dM101, and single 

stranded templates prepared. 	By hybridisation to Ri and R7, two clones, 

one of each strand were identified and designated Bg14 (+) and Bgi 6 (-). 

7.3.2.3 	Purified 2.2kb Eco Ri fragment was digested with Sau 3A and 

ligated with Barn Hi digested M13rnp 2/Barn. 	White plaques were recovered 

by transfection into dM101 and single stranded templates prepared. 

The percentage of white plaques was rather high (about 20%) and 

hybridisation of some of these clones to both Ri and R7 templates 

indicated that many of these clones had more than one insert. 

7.3.3 	Cloning into M13rnp2/Hind III 

The 2.2kb Eco Ri fragment was rearranged into a 2.2kb Hind III 
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fragment as described in Fig. 5.4 and ligated with M13mp2/Hind III. 

White plaques were recovered by transfection into JM101, and single 

stranded templates prepared. 	Only one clone (Hind 3) hybridised to 

RI and this has the (-) strand cloned 

7.3.4 	Cloning into M13mp7 

Purified 2.2kb Eco RI fragment was digested with either Taq 1 

or Msp 1 and ligated with Acc 1 digested M13mp7. 	White plaques were 

recovered by transfection into JM101 and singletemplates prepared. 

7.4 	Sequencing of the single stranded templates 

The success of the chain terminating sequencing reactions was 

found to be very variable, so that some templates produced better 

autordiegrams than others. 	There wasparticular difficulty with the 

M13rnp7 recombinant clones. 	Filter hybridisation to 32p  labelled 

2.2kb Eco Ri fragment (data not shown) showed that these clones do 

contain inserts from this fragment, but a sequence could only be obtained 

from a few clones. 	This variability proved to be the limiting factor 

in the rate with which sequence data could be accumulated. 

Template R7 was sequenced, and about 120 bases of reliable 

sequence data obtained. 	More sequence data can be read from the gels, 

but becomes rather unreliable beyond about 120 bases unless the resolution 

is particularly good. 	An examination of this data reveals a Barn Hi site, 

105 bases from the Eco RI site. 	This sequence must therefore come from 

the ftsQ end of the 2.2kb Eco RI where a Barn Hi has already been located 

(chapter 4), 0.1kb from the Eco RI site. 	This was confirmed by 



Fig. 7.4 	List of templates used for sequencing the 2.2Kb Eco RI fragment 

The point of origin of each template on the 2.20 Eco Ri fragment is 

represented as a circle and the direction of DNA synthesis is shown by an 

arrow. 	The (+) and  (-) signs arbitarily represent the DNA strand that 

has been cloned into M13. 



Te mpta t e 	ECORI Barn HI 	
BIII 	 Hin1dII 	Ec1RI 

R7 	- 	 0- 

BamI,2 4-

Bum3,4 - 

3g14 + 

3q16 - 

Sau6 - 

H i n d 3 	- 

Fig 7.4  7.4 



sequencing the Barn 1 and Barn 3 templates. 	Barn 1 was identified by 

hybridising to the R7 template, as having cloned the (+) strand, and 

when sequenced, revealed an Eco Ri site 105 bases from the Barn Hi site. 

The DNA sequence between the Barn Hi and Eco Ri sites was exactly 

complementary to that determined in R7, without exception. 	Barn 3 

was determined by hybridisation to have cloned the (-) strand, and 

the 	first 20 bases of its sequence were identical to those obtained 

from the R7 template. 	A further 80 bases were determined. 	Therefore 

about 200 bases of the 2.2kb Eco Ri fragment have been reliably determined 

at the ftsQ end of the fragment, and these are shown in Fig.  7.5. 

The sequence of only one strand is shown, from 5' to 3' progressing 

from the Eco Ri site into the 2.2kb Eco Ri fragment. 	By convention 

this is the antisense strand of genes that would be transcribed into the 

2.2kb fragment (i.e. in the same direction as ftsA). 	Fig. 7.5 also 

shows some restriction sites which have been identified in the sequence, 

and a list of translation stop codons and initiation codons, in both 

DNA strands. 

It proved difficult to obtain reliable sequence data from 

the Ri template. 	This was partly due to a G-C rich region about 

20-30 bps into the fragment which proved difficult to resolve. 

Sequence data was obtained from the Bg14 and Bgl 6 templates. 

100 bases of reliable sequence were obtained from the Bgl 6 template, 

and 150 bases from the Bgl 4 template. 	The Bgl 4 template has the 

(+) strand cloned into it, so that the sequence data obtained is from 

the opposite strand to that of the sequence in Fig. 7.5. 	For convenience, 

the complementary strand of Bgl 4 is shown in Fig. 7.6 along with the 

sequence data from Bgl 6. 	Therefore this sequence in Fig. 7.6 is the 

same strand as shown in Fig. 7.5. 	Sequence data must be obtained across 



Fig. 7.5 	DNA sequence of the region around the Barn Hi restriction site in 

the 2.2Kb Eco Ri fraciment 

The sequence proceeds from the 5' end to the 3' end so that the 

strand shown is the antisense strand for genes transcribed from left to 

right. 	This strand is synthesised from template R7, (which has the (_) 

strand cloned) so the strand shown is the complementary (+) strand. 

The tables below, show the position and frame of translation 

initiation and stop codons, in both strands. 	The position number for 

each codon is the number of bases from the middle base of the codon 

to the 5' terminus of that strand. 	The frame number is arbitary. 



Fig. 7.5 

o EcoRl 	
50 

GAATTCTGGA ACTGGCGGAC TAATATGTCG CAGGCTGCTC TGAACACGCG 

51 AAACAGCGAA GAAGAGGTTT CTTCTCGCCG CAATAATGGA ACGCGTCTGG 100 
BamHI 	 150 101 CGGGGATCCT TTTCCTGCTG ACCGTTTTAA CGACAGTGTT GGTGAGCGGC 

151 TGGGTCGTGT TGGGCTGGAT GGAAGATGCG CAACGCCTGC CGCTCTCAAA 20°  

In the above (+) strand, translation initiation and stop codons appear at: 

Stop Codons (TGA, TAA or TAG 

Position Frame 

22 1 

42 3 

85 1 

120 3 

129 3 

144 3 

Start Codons (ATG or GTG- 

Position Frame 

26 2 

87 3 

147 3 

158 2 

170 2 

177 3 

In the complementary (-) strand, translation initiation and stop co dons 

appear at: 

Stop Co dons (TGA,TAA, TGA 

Position 	 Frame 

	

4 	 1 

	

73 	 1 

	

180 	 2 

Start Codons (ATG or GTG) 

Position 	 Frame 

155 	 3 



Fig. 7.6 	DNA sequence of the region around the Bgl II restriction site 

in the 2.20 Eco Ri fragments 

The sequence proceeds from the 5' end to the 3' end so that 

the strand shown is the antisense strand for genes transcribed from 

left to right. 	The strand is the same strand as shown in Fig. 7.5 

(i.e. the (+) strand). 	The tables below show the position and frame 

of translation initiation and stop codons in both strands. 	The position 

number for each codon is the number of bases from the middle base of a 

codon to the 5' terminus of that strand. 	The frame numbers are arbit1ary. 

The sequence is compiled by sequencing in both directions from 

the Bgl II, so it is not known if the sequence is contiguous through the 

Bgl II site. 



Stop Codons (TGA, TM, TAG) Start Codons (ATG, GIG 

Position Frame 

66 3 

77 2 

123 3 

137 2 

183 3 

204 3 

228 3 

239 2 

Position Frame 

38 2 

56 2 

61 1 

76 1 

94 1 

139 1 

203 2 

214 1 

217 1 

Fig. 7.6 

	

o
PvuU 	50 

GAAGTTCTGC CCGACGGTAT GGTCAATATC ATTGGCGTGG CAGCTGCCCG 

51 TCGCGTGGTA TGGATAAAGG CGGGGTGAAC GACCTCGAAT CCGTGGTCAA 10°  

101 GTCCTACAAC GCGCCATTCA TTGACCAGGC AGAATTGATG GCAGATTGTC ISO 

BQII
AT

I 	 PvuIl 
151 ACTC1TC GGTATATCTG GCGCTTTCTG GIAAGCACAT CAGCTGCCAG 200 

201AATGAAAITG GTATGGTGCC TATTTCTGAA GAAGAAGTGA CGCAAGAAGA 250 

In the above (+) strand, translation initiation and stop codons appear at: 

In the complementary (-) strand, translation initiation and stop codons 

appear at: 

	

Stop 	Codons (TGA, TAA, TAG 
	

Start Codons (ATG, GTG 

Position 	 Frame 
	

Position 	 Frame 

	

30 	 3 
	

62 	 2 

	

60 	 3 
	

64 	 1 

	

101 	 2 
	

131 	 2 



Fig. 7.6 continued 

Position 	 Frame 	 Position 

132 	 3 	 135 

153 	 3 	 220 

221 

227 

Frame 



Fig. 7.7 	DNA sequence around the Hind III site in the 2.2Kb Eco Ri fragment 

The sequence proceeds from the 5' end to the 31  end so that the 

strand shown is the antisense strand for genes that are transcribed from 

left to right. 	The strand is the same as that shown in Figs. 7.5 and 

7.6 (+ strand). 	The tables below show the position of translation initiation 

and stop codons in each strand. 	The position of each codon is the number 

of bases from the middle baseof a codon to the 5' terminus of that strand. 

The frame numbers are arbittary. 



Start Codons (AIG or GTG 

Position Frame 

10 1 

54 3 

74 2 

88 1 

91 1 

Fig. 7.7 

,.. Sau3A 
GATCGAGCCG CGCTATACCG AGCTGCTCAA CCTGGTCAAC GAAGAGATAT5° 

Taq I 
Hind iii 

TGCAGTTGCA GGAAAAGCTT CGCCAACAAG GGGTTAAACA TCACCTGGCG 10  IO 

MspI 	 Sau3A 
101 GCAGGCATTG TATTAACCGG TGGCGCACGC AGATCGAAGG TCTTGCAGCC ISO 

Taqi 

151 TGTGCTCAGC GCGTTGTTTC ATACGCAAGT 

In the above (+) strand, translation initiation and stop conons appear at: 

Stop Codons (TGA, TAA or TAG) 
	

Start Codons (ATG or GTG) 

Position 	 Frame 
	

Position 	 Frame 

	

86 	 2 
	

121 	 1 

	

115 	 1 
	

153 	 3 

In the complementary (-) strand, translation initiation and stop codons 

appear at: 

Stop Codons (TGA, TAA or TAG 

Position Frame 

11 2 

24 3 

67 1 

89 2 

96 3 

144 3 

153 3 

167 2 



the Bgl II site before the Bgl 4 and Bgl 6 sequences can be determined 

to be conti guous with each other. 	Fig. 7.5 also shows some restriction 

sites which can be predicted from the sequence, and a list of 

translation and stop codons in both strands. 

The Hind 3 template containing the (-) strand was sequenced 

and 110 bases reliably obtained. 	One of the Sau 3A clones, Sau  6 was 

sequenced, and found to have a Hind III recognition site, and sequence 

data identical to that in Hind 3. 	Therefore the (-) strand of this Sau 3A 

fragment has been cloned into Sau 6. 	The sequence around the Hind III 

site is shown in Fig. 7.7 and is the same strand as that shown in Fig. 

7.5 and 7.6. 	Fig. 7.7 also shows some restriction enzyme sites that 

can be predicd from the sequence, and a list of translation intiation 

and stop codons in both reading frames. 

Approximately 500 bases have also been sequenced from Sau 3A, 

Mspl and Taq 1 fragments, although 4ove of this data overlaps with that 

shown in Figs. 7.5, 7.6, or 7.7, and will not be discussed further. 

7.5 	Interpretation of sequence data 

Largely due to the difficulty experienced with sequencing the 

templat9sof Ml3mp 7 clones, the entire sequence of the 2.2kb Eco R1 

has not yet been obtained. 	It is hoped that these problems can be overcome 

by repeating the cloning of the Taq 1 and Msp 1 fragments into two newly 

constructed vectors M13mp8 and M13mp9 (Messing, unpublished data). 

However, until the entire sequence is obtained the exact position of the genes 

on the fragment cannot be determined. 	The data that has been obtained 

represents a significant start to the sequencing project, and some useful 

information can be extracted from each set of sequence data shown in 



Figs. 7.5, 7.6, 7.7 

7.5.1 	Sequence about the Barn Hi site 

A study of the sequence data shown in Fig. 7.5 reveals that 

both strands have one open reading frame throughout the sequence. 

More sequence data is required though to assess whether either or both 

of these is actually being used in vivo for polypeptide synthesis. 

Transcriptional assays in chapter 5 suggested that the 105bp Eco Ri-Barn Hi 

fragment could (if the BgiII-Hind III fragment does not) have promoter 

activity, so this sequence can be examined for promoter-like sequences. 

In their review, Rosenberg and COurt (1979) have collated 46 known 

promoter sequences and determined the similarities, and differences between 

them. 	There appears to be at least two regions of DNA that are 

involved in the binding of RNA polymerase, a sequence around -10 from 

the mRNA start point, often called a "Pribnow box, and a sequence at 

-35 nucleotides from the mRNA start point. 	The Pribw box is a 

heptameric region, TATAATG0to which most promoter sequences are generally 

homologous 	. 	However, the only residue which appears to be invariable 

is the T residue in the sixth position. 	The T and A in the first and 

second positions are strong conserved, and T, A and A in the third, fourth 

and fifth positions respectively, considerably less so. 	The 

residue in position 7 is weakly conserved, as are the 6-9 nucleotides 

downstream of it towards the mRNA start point. 	The mRNA start point is 

usually a purine, and an A more often than a Cr. 	(Rosenberg and Court 

1979). 

The second region, the -35 region exhibits some homology 

among the promoters that have been studied, although the position of the 

homology fluctuates + 2 bps in respect to the mRNA startpoint. 	A 



trjnucieotide TTG is strongly conserved in this region, and adjacent 

to this and downstream is a weakly conserved trinucleotide ACA. 

Promoter sequences that are under the influence of a positive regulatory 

molecule (PRE, gal P1  and ara BAD) appear to have very poor -35 homologies 

(Rosenberg and Court 1979). 

Because of the variability in sequences of known promoters it 

is obviously not possible to unequivocally recognise a promoter from a 

nucleotide sequence, and this can only be done with a biological assay. 

However, the sequence can be studied for promoter like sequences 

as a basis for further study. 	In the Eco Rl-Bam Hi 105 bp region there 

is only one possible "Pibnow box" like sequence in the strand shown in 

Fig. 7.5, and none in the complementary strand. 	This sequence 

occurs around position 23 and is TAATATG. 	This sequence has the 

strongly conserved TA in positions 1 and 2, and the invariable I in the 

sixth position as well as the weakly conserved G in the seventh position, 

and A in the fifth position. 	The sequence only differs from the standard 

"Pribnow box" in the third and fourth weakly conserved positions. 
33,34- 

There are also A and & residues at positions 32 and 	respectively 

which could act as mRNA start points. 	The-35 region of this putative 

promoter would be cleaved by Eco Ri and therefore outside the 2.2kb Eco 

Rl fragment. 

If this putative promoter should be active in vivo then the 

question arises as to whether the DNA sequences are present to allow 

ribosome binding and initiation of polypeptide synthesis. 	As frames 

1 and 3 are closed by several stop codons (Fig. 7.5) translation could 

only be in reading frame 2 unless initiated downstream of position 85 in 

franbl, or downstream of position 144 in frame 3. 



84. 

Polypeptide synthesis is initiated at the codons ATG or GTG, 

although ATG is the more commonly used of the two. 	Shine and Dalgarno 

(1974) identified a region upstream of the start codon which is 

required for ribosome binding, and which has homology to the 3' terminus 

of the 16S RNA of the ribosome, 3' AUUCCUCCACUAG5 . 	Several mRNA sequences 

have been studied, and found to have sequences homologous to this, 

at around 8 residues upstream from the start codon. 	However, this 

homology can vary from 3 residues (in TrpE mRNA) up to 9 residues 

(in 	(This includes G.0 pairing which does occur in RNA). 

(Shine and Dalgarno 1974). 

As the extent of these homologies variesgreatly, it is again 

very difficult to predict ribosome initiation points from a 

nucleotide sequence. 	There is sequence that does have homology to the 

16$ RNA around position 16 1 in Fig. 7.5 upstream of the start codon 

at position 170. 	The sequence 	rGG- 	 has 

good homology to the 16S RNA, and is located perfectly for initiation 

at the ATG codon (position 170), although obviously further experimentation 

is required to determine if this is used in vivo. 

7.5.2 	Sequence around the Bgl II 

In the interpretation of this sequence, it must first of 

all be remembered that although the sequence is presumed to be contiguous 

through the Bgl II site, this has not yet been proven. 

From the sequence shown in Fig. 7.6 one reading frame is open 

in both strands for the entire sequence. 	The complementation analysis 

in chapter 5 would indicate that this DNA is internal to the ftsA 



gene, and it is most likely then that the ftsA gene is translated in the 

first reading frame which is not closed in the sequence, using the 

strand shown as the antisense strand. 

This sequence is most useful in determining the precise location 

of the Pvu II 	 restriction sites. 	The sequence clearly shows 

two Pvu II sites, 150bps apart. 	This therefore defines the deletion in 

pGH370. 	The deletion of 150bps will not cause a frameshift if the 

ftsA gene is translated in the first reading frame, but this sequence must 

be essential for the function of the ftsA gene product as pGH370 does 

not complement ftsA mutants. 



7.5.3 	Seauence around the Hind III site 

The Sau  6 template is most useful as it defines the presence 

of only one Hind III site. 	All the sequence in Fig. 7.7 is therefore 

continguous. 	The complementation data in chapter 5 suggests that this 

sequence is internal to the ftsA gene. 	It is unlikely then that 

the complementary strand to that shown in Fig. 7.7 is also being 

used, and it does have stop codons within all three reading frames. 

Lutkenhaus and Wu (1980) determined that the ftsA gene must extend 

at least 135 nucleotides past this Hind III site. 	This suggests 

that ftsA is transcribed in frame 3, in Fig. 7.2, as both frames 1 

and 2 have stop codons before this point. 	The C-terminal end of the ftsA 

gene has therefore not yet been sequenced in this study. 



CHAPTER 8 

General Discussion 

The isolation of the mutant TOE 1, has identified a new gene 

ftsQ which maps in the cluster of cell division genes at 2 minutes 

on the E. coli K12 genetic map (Bachmann and Brooks Low 1980). 	This 

gene maps adjacent and anticlockwise to ftsA, and its product may be 

required periodically in the cell cycle asis the ftsA gene product. 

Both genes map on a 2.2kb Eco Ri restriction fragment, as does the for.1o+e 

iial part of the ftsZ gene and its promoter (Lutkenhaus and Wu 1980). 

The precise organisation of the genes on this fragment has not been determined, 

but the following model is proposed to explain the observations in this 

study. 

1) 	ftsQ, ftsA and ftsZ all have their own promoters 

The 0.5kb Hind III-Eco Rl fragment, when cloned into pKO-1 

has promoter activity, and this accords with the previous suggestion that 

the ftsZ promoter, and p.,otmal part of the structural gene lie within 

this fragment (Lutkenhaus and Wu 1980). 	However, the ftsZ gene may be 

translated from more than one type of transcript, as mRNA synthesis 

from upstream of the Hind III does not appear to terminate within the 

0.5kb Hind Ill-Eco RI fragment. 

The ftsA promoter has not been identified in the fusion 

piasmids that have been constructed, but there are two lines of evidence 

for its existence. 	a) ftsA must be transcribed independently of ftsQ 

as some plasmid recombinants (pGH300, pGH-4) complement ftsA mutants, but 

te 
not ftsQ mutants and b) Promoter activity n 	reater in the 1.7kb Eco EU- 



Hind III fragment (in pGH106/A), than in pGHilO where the 0.9Kb Barn Hi-

Bgi II fragment has been deleted, and this would suggest that a promoter 

lies within the Barn Hl-Bgl II fragment. 

pGH110 carries only the Eco Ri-Barn Hl(0.lkb) and Bgl 11-Hind III 

(0.7kb) fragments, but has promoter activity. 	This activity may arise 

from within the 0.1kb Eco Ri-Barn Hi fragment where a promoter type sequence 

has been identified. 	A sequence similar to a "Pribnow box" has been 

located approximately 23 base pairs from the Eco Ri site. 	This 

site would cleave the essential -35 region of this RNA poiymerase 

recognition sequence. 	The sequence of the 5-10 nucleotides adjacent 

to the cloning site in the vector would therefore dictate the ac 'ivity 

of this promoter. 	The identification of this region as the ftsQ 

promoter would correlate with complementation analyses of genetic 

recombinants, some of which complement TOE 1 (ftsQtS)  well (pGH301,FH16, 

)GH16), some rather poorly (pGH-4, pGH106) and some not at all (pGH300). 

The sequence of the vector DNA close to the cloning site is known 

in several of these recombinants (Fig. 8.1). 	None of these have the 

-35 sequence TTGACA observed in other -35 sequence(Rosenberg and Court 

1979), although pGH301 does have two T residues, four bases from 

the Eco RI site in the vector. 	pGH-4 has only one of these T residues, 

and pGH300 neither of them. 	It is possible that it is these T 

residues (corresponding to the first two residues of the sequence TTGACA) 

that determine the activity of this promoter. 	Alternatively, ftsQ 

may be under positive control (like gal P1), so that pGH301 has 

fortuitous similarity to the required sequence for ftsQ expression. 



Fig. 8.1 	DNA sequence around the Eco Ri cloning site in pGH300, 

pGH301 and pGH-4 

The DNA sequence adjacent to the Eco Ri site in pGH300 derives from 

the AO gene (McKenney et al 1981) in pGH301 from pBR322 

(McKenney et al 1981) 

and in pGH-4 from pBR325 (personal communication from N. Willetts). 

The sequences below show the Pribnow box (Rosenberg and Court 1979) 



Eco RI  

pG Hr4 	TTGCCATACGGAATTCTGGAACTGGCGGATAATATGI 

pG H 300 	GGATTCGCCAGAATTCTGGAACTGGCGGA1AATATGI 

p G H 301 	TCGTCTTCAAGAATTCTGGAACTGGCGGACITAATATG 

TTGACA 	 TATAATG 

—35 	 Prbnow 

Fig 5.1 



RM 

2) 	ftsQ may code for a 30 kilodalton protein 

Lutkenhaus and Wu (1980) determined that the 3.2kb Hind III 

fragment carried on the 'X16-2 transducing phage synthesised a 30 kilodalton 

protein, and deduced that as ddl was the only gene identified on 

this fragment, that the 30 kilodalton protein is the ddl gene product. 

Their confirmation for this deduction was that the phage 2¼JFL41 (which 

carries the 2.2kb Eco Ri fragment) does not synthesise this protein. 

The observations in the present study however, suggests that the 

30 kilodalton protein may be the ftsQ gene product, rather than the 

ddl gene product. 	For example, the phage JFL41 may not synthesise the 

30 kilodalton protein because the 2.2kb fragment is inserted so that the 

ftsQ promoter is not active and the phage promoters interfere with expression 

of the 30 kilodalton protein. 	There is sufficient coding capacity on 

the 2.2kb Eco RI fragment 	to code for an additional 30 kilodalton 

protein as well as the 48 kilodalton protein (ftsA gene product). 

pGH203 synthesises a 37 kilodalton protein, which is most probably 

synthesised from the ftsZ promoter and translation initiation sequence, 

across the Eco Rl site into the 2.2kb Eco RI fragment. 	The 37 kilodalton 

protein is probably an ftsZ-ftsQ hybrid protein, reading in the open 

reading frame identified in the sequence around the Bam Hi site. 

The start codon ATG and ribosome binding site 160-170 bases from the 

Eco Ri site may be the translation initiation sequence for the ftsQ 

gene which would synthesise a 30 kilodalton protein. 	There is another 

start codon (ATG) around 26 bases from the Eco Ri site, within the "Pribnow 

box. 	From a calculation of the amino acid sequence, from the DNA sequence 

between the start codons, a protein synthesised from this start codon 

would be approximately 6 kilodaltons larger than the ftsQ gene product. 



Fig. 8.2 	Protein synthesis directed from pGH203 

This diagram shows the hypothetical origin of the proteins synthesised by 

pGH203. 	The 30 kilodalton and 43 kilodaltons are presumed sizes for 

proteins, which would be "masked" by other plasmid coded proteins 

in the gel and have not been observed as yet. 	The promoters are 

shown by a letter P. 	The left-most promoter is the ftsZ promoter, and 

the rightmost the ftsA promoter. 

(see note added in proof) 



pGH 203 

30K? 

35K 	
71 

37K 	
-j 

43K ? 
1 

Fig 8.2 



Fig. 8.3 	Model for the organisation of the genes ftsQ, ftsA and 

ftsZ on the 2.2kb Eco Ri fragment 



	

EcoRl Barn HI 	 BgIR 	 Hind III 	 EcoRl 
I 	 A 

30K 	 48K 

ft.Q product 	 ftsA product 	 ftsZ 

TAATATG 	 TGGG ATG 

RNA polymerase 	 ribosome 

	

binding 	 binding 

Fig 8.3 



This protein could be the 35 kilodalton protein that is synthesised from 

pGH203 (Fig. 8.2). 	Fig. 8.3 shows the proposed model for the organisation 

of the fts genes. 

The interpretation of the sequence data is speculative but does 

correlate well with the observations in this study. 	The gene organisation 

and control could be verified by further experimentation. 	For example, 

the completion of the DNA sequence of the 2.2kb Eco RI fragment, and 

the DNA upstream of this fragment, should clarify the precise location 

of the fts genes in this region. 	The restriction map predicted from 

this sequence will be used for cloning each fts promoter into pKO 

fusion plasmids, and control elements detected by the introduction 

of mutations by in vitro mutagenesis (Humphreys et al 1976). 	The 

mRNA mapping technique of Berk and Sharp (1977) could also be used to 

identified the mRNA start point within the region. 

It is hoped that these studies will lead to the elucidation  of 

the control of these genes, and their role in cell division. 



Note added in proof 

A recent experiment by Vicky Derbyshire and myself has 

shown from two dimension 1 polyacrylamide gel electrophoresis 

that pGH203 synthesises an additional 43 kilodalton protein with 

a different isoelectric focusing point to that of the galK gene 

product. 	In this analysis pGH203 also synthesises an additional 

30 kilodalton protein which has a different isoelectric 

focusing point to that of the 30 kilodaltonp-lactamase protein. 
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We report the identification, cloning, and mapping of a new cell division gene, ftsQ. This gene formed part of a cluster of three division 

enases NA ftsZ) which itself formed part of genes (in the order ftsQ 
a larger cluster of at least 10 5-236. 

urrent 
genes, all of 

which were involved in some step in cell division, cell envelope synthesis, or both. The ftsQAZ group was transcribed from Press, at least two independent promoters. 
1973. 

spora. 
In Escherjchia coli there is a large cluster of 	30°C, and the resultant clones were screened for genes, all of which are involved in 

ietical  some aspect 
cell envelope synthesis, cell division, or both temperature-sensitive mutants by replica plat- 

lies in 
3 -239. 

(5-8, 11, 12; H. J. W. Wijsman, Genetics 74: 
ing at 30 and 42°C. A number of such m tants u 
(designated "TOE" mutants for "temperature 

n the S296, 1973). So far, eight different genes have 
been placed unambiguously 
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oscillation enrichment") were obtained. 

cyclic 
US. 	J. 

within this region 
by the use of specialized transducing phages (5- TOE-1 obtained in this way formed colonies 
7), and a number of other mutations of similar on Oxoid nutrient agar at 30°C but not at 42°C. 

This Corn- 
cillus 
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Previous studies on the ftsA gene have shown 

population of 
TOE-1 was shifted from 30 to 42°C, all cell 

that it is located within this cluster (6, 10, 12), 
that the action of the ftsA 

division stopped immediately (Fig. 1), but ex-
ponential cell growth continued for a minimum 

protein (a polypeptide 
of molecular weight 50,000 [6]) is required only of three mass doublings so that long, filamentous 
during septum formation (ii), and that the cells were produced (Fig. 2). These filaments 

syn- 
thesis of this protein appears to be required only were multinucleate (data not shown), indicating 

that DNA replication and segregation during a short period immediately before the 
onset of septum formation (4). If 

were not 
affected at the temperature which was restric- ftsA protein is 

not made at the correct time in one cell cycle, tive for division. The phenotype of TOE-1 is 
therefore that of an fts 	in then the formation of a septum is blocked until 

after the synthesis of the 
mutant 	that it appears 

to be affected specifically in septum formation protein at the equiva- 
lent time in the next cycle (4). A search was 
therefore made for division 

(8, 10). 
The mutation responsible for the TOE-1 phe- genes which had a 

single required time of action in each cycle. To notype was found by P1 transduction to be 75% 
do this, an asynchronous population of UV-fr- cotransducible with leu at 1.6 min on the genetic 
radiated cells was grown at 30°C and shifted to 

map of E. coli (1). This made it likely that the 
42°C for periods of 5 min at each successive mutation was within the known cluster of divi-

sion-related genes located mass doubling of the culture. After three such 
cycles, the cells were passed through a mem- 

at about 2 mm 	(1, 5, 12, 13; H. J. W. Wijsman, Genetics 74:S296, 
brane filter (pore size, 14 jzm) to enrich for 
abnormally long 	Those 

1973). This was confirmed, and the locus was 
determined precisely by the use of specialized cells. 	few cells which 

were trapped by the filter were subjected to a transducing phages for this region (6, 7; G. Hat-
full 

further three cycles of growth at 30°C with 5- and J. F. Lutkenhaus, unpublished data). 
These plaque-forming, integration min pulses at 42°C as before and then filtered -proficient A 
phages were constructed in 

- 
once more. The cells which were trapped on the 
filter were then plated on nutrient agar (Oxoid 

vitro by cloning re- 
strictjon endonuclease fragments of the chro- 

nutrient broth plus 50 g of thymine per ml) at mosome and extending or deleting these in vivo 
in or 	vitro so as to contain various fragments of 

435 



436 	NOTES 
	

J. BACTERIOL. 

moor C ddl 	f(s 0 ftsA  ((S Z envA 

1 

40  

20 L 

° 

0 	tC 	00 	10 	10 	50 	50 

' ME 

FIG. 1. Kinetics of cell growth and division in a 
log-phase population of strain TOE-1 [ftsQ(Ts)J  after 
a shift from 30 to 42°C at 0 mm. Increase in total cell 
mass was followed as optical density (OD) at 540 nm 
(0). Cell number was measured with a Coulter elec-
tronic particle counter (x), and median cell volume 
(0) was measured with a Coulter Channelyzer, as 
described previously (2). Cell division stopped almost 
immediately after the shift, but cell growth continued. 

FIG. 2. A cell of strain TOE-I [ftsQ(Ts)] after our 
generations of growth at 42°C. The cell is approxi-
mately 64 pin in length, or about 10 to 20 times as 
long as cells grown at 30'C. Unlike the filamentous 
cells of ftsA(Ts) strains under comparable conditions, 
there is no sign of periodic indentations atpresump-
tive septal sites (4, 6, II). 

the region. These cloning vectors are especially 
convenient in that stable lysogens can be easily 
obtained (3). TOE-1 was lysogenized with a 
number of these at 30°C, and the lysogenic 
clones were tested for temperature sensitivity. 
The results obtained with two of the transducing 
phages (A ddl 4-  and A F1116; Fig. 3) served to 
locate the TOE-i mutation. Lysogenization with 

El52 

Ed dE 

FIG. 3. The order of genes in the murC-envA sec-
tion of the E. coli chromosome (top) and the chromo-
somal inserts (boxes) cloned into the three specialized 
transducing phages, A 16-2, A ddl 4-, and A FHI6. The 
"+" signs indicate that the gene directly above is 
complemented by the particular phage. The lengths 
of the inserts in the phages are approximately (from 
top to bottom) 9.77 x 10, 6.51 x I0, and 2.1 X io 
nucleotide base pairs. The region contains a mini-
mum of three independent promoter sites. 

either of these two phages rendered TOE-1 tem-
perature insensitive. The phenotypes of other 
lysogens made with phages carrying neighboring 
or overlapping regions were consistent with this 
location. When temperature-resistant lysogens 
were cured of their phages by the use of A b2 (6) 
the cured cells were once again temperature 
sensitive. The right-hand end (as written) of the 
chromosomal insert in A ddt°  is defined by a 
Hindlil site within the ftsA gene (6, 7) so that 
mutations within ftsA are not complemented by 
this phage. The chromosomal fragment cloned 
in A FH16 was bounded by two EcoRI restriction 
sites (Fig. 3) and was already known to carry the 
entire ftsA gene (G. Hatfull, unpublished). The 
mutation in TOE-1 must therefore lie within 
this fragment in a new gene to the left of ftsA. 
Confirmation that this new mutation did not lie 
within the ftsA gene was obtained by lysogeniz-
ing TOE-1 with the phage A 16-4, which carries 
the ftsAl2(Ts) mutation on a larger fragment 
which covers the entire region in question (Fig. 
3). Lysogenization of TOE-1 with A 16-4 con-
ferred a temperature-resistant phenotype. It 
could be argued that TOE-1 carries a missense 
mutation in ftsA and that A ddl 4-  produces a 
peptide fragment that confers temperature re-
sistance by intragenic complementation. How-
ever, as A ddl 4-  did not complement any of the 
five ftsA alleles that we have tested, this is 
thought to be an unlikely possibility. Thus, we 
may conclude that TOE-1 carries a missense 
mutation in a new gene, which we designate 
ftsQ. The length of the chromosomal fragment 
cloned in A FH16 is about 4.6% of lambda, or 
about 2.14 x 103  base pairs. The ftsA gene codes 
for a polypeptide of molecular weight 50,000 (6) 
which would require about 1.36 x 103  base pairs 
of DNA. The maximum length of the new gene 
(including its promoter) is about 700 to 800 base 
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pairs, giving a maximum molecular weight for 
the ftsQ product of about 20,000 to 30,000. It is 
not yet known whether ftsA shares this pro-
moter or has one of its own. However, another 
independently expressed gene, ftsZ, has been 
located adjacent to ftsA on the other side (7) 
(Fig. 3), and this also is expressed on cloned 
fragments which do not carry a complete ftsA 
gene. Thus, ftsA may possibly share a common 
promoter with either ftsQ or ftsZ, but these 
latter two genes must have independent pro-
moter sites. The known mutations in these three 
adjacent genes have very similar phenotypes in 
that they specifically affect late stages in septum 
formation. Nevertheless, it is clear that they 
form a minimum of two transcriptional units, 
each of which can be expressed efficiently when 
transposed away from its neighbors to an abnor-
mal chromosoma.! location (att?). The functional 
reason, if any, for the close clustering of these 
cell division genes therefore remains unknown. 

We thank Susan Wilkie for skilled assistance with these 
experiments. 
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