35 research outputs found

    Liposome Circulation Time is Prolonged by CD47 Coating.

    Get PDF
    INTRODUCTION: Bio-degradable nano-particles have many applications as drug delivery vehicles because of their good bio-availability, controlled release, low toxicity and potential for encapsulation. However, the most important obstacle to nanoparticulate drug delivery is elimination by macrophages which reduces the residence time of nanoparticles in the blood. To overcome this problem, the surface of the nanoparticle can be passivated by coating with Polyethylene glycol (PEG). However, the use of PEG has its own disadvantages. CD47 receptor acts as a self marker on the surface of many cells and inhibits phagocytosis. This study used a CD47 mimicry peptide as a substitute for PEG to fabricate "stealth" nanoliposome with reduced macrophage clearance. METHODS: Doxorubibin was used as a model drug because of its inherent fluorescence. Doxorubicin-containing liposomes were coated with different percentages of CD47 mimicry peptide (0.5% and 1%). PEGfunctionalized doxorubicin-containing liposomes, were used as a comparator. The liposomal formulations were intravenously injected into mice. Serum was collected at pre-defined time points and tissue samples were taken at 24 hours. Fluorescence was used to determine the concentration doxorubicin in serum, heart, spleen, kidney, liver and lung tissues. RESULTS: Tissue biodistribution and serum kinetic studies indicated that compared with PEG, the use of CD47 mimicry peptide increased the circulation time of doxorubicin in the circulation. Moreover, unwanted accumulation of doxorubicin in the reticuloendothelial tissues (liver and spleen), kidney and heart was significantly decreased by the CD47 mimicry peptide. CONCLUSION: The use of a CD47 mimicry peptide on the surface of nanoliposomes improved the residence time of liposomal doxorubicin in the circulation. The accumulation of drug in non-target tissues was reduced, thereby potentially reducing toxicity

    Characteristics of Different Systems for the Solar Drying of Crops

    Get PDF
    Solar dryers are used to enable the preservation of agricultural crops, food processing industries for dehydration of fruits and vegetables, fish and meat drying, dairy industries for production of milk powder, seasoning of wood and timber, textile industries for drying of textile materials. The fundamental concepts and contexts of their use to dry crops is discussed in the chapter. It is shown that solar drying is the outcome of complex interactions particular between the intensity and duration of solar energy, the prevailing ambient relative humidity and temperature, the characteristics of the particular crop and its pre-preparation and the design and operation of the solar dryer

    An experimental study on drying characteristics and kinetics of figs (Ficus carica)

    No full text
    In this study, the thin-layer drying characteristics of Figs (Ficus carica) are investigated in a pilot scale forced convective dryer. Experiments carried out under various operating conditions including air temperature (40, 50, 60, 70°C), air velocity (0.65, 2.1, 3.45, 4.85 m/s) and air humidity (0.005, 0.010, 0.015 kg/kg) and the effects of these operating conditions on the drying kinetics and the drying time determined. The obtained kinetics data are fitted into a conceptually developed model. The equilibrium moisture content of the dried figs is determined at different values of temperature and relative humidity of air. The values of effective moisture diffusivity (Deff) are obtained from the Fick’s second law and a temperature-dependent relation is proposed for this parameter

    Performance Evaluation of Sweet Sorghum Juice and Sugarcane Molasses for Ethanol Production

    No full text
    Sweet sorghum juice and traditional ethanol substrate i.e. sugarcane molasses were used for ethanol production in this work. At the end of the fermentation process, the sweet sorghum juice yielded more ethanol with higher ethanol concentration compared to sugarcane molasses in all experiments. The sweet sorghum juice had higher cell viability at high ethanol concentrations and minimum sugar concentration at the end of the fermentation process. The ethanol concentration and yield were 8.9% w/v and 0.45 g/g for sweet sorghum in 80 h and 6.5% w/v and 0.37 g/g for sugarcane molasses in 60 h, respectively. The findings on the physical properties of sweet sorghum juice revealed that it has better physical properties compared to sugarcane molasses, resulting to enhanced performance of sweet sorghum juice for ethanol production

    Soil remediation via bioventing, vapor extraction and transition regime between vapor extraction and bioventing

    Get PDF
    The main objectives of this study were evaluation of the efficiencies of bioventing (BV), soil vapor extraction (SVE) and transition regime between BV and SVE (air injection bioventing [AIBV]) for benzene and toluene removal from polluted sandy soils. Materials and Methods: Laboratory-scale set-up consisted of three cylindrical units (with 29 cm in length with a 7.29 cm i.d.) was conducted to study the removal efficiency of three in-situ remediation technologies. Results: The results showed that, after 48-h air injection with constant air flow rate of 250 mL/min, benzene (initial concentration of 1 mg/g of soil) removal efficiency in BV, SVE and AIBV reactors were almost 84, 98 and >99.5%, respectively. Also results indicated that, toluene with a similar concentration was successfully (>99.5%) reduced via AIBV technology, after 72-h continuous air injection. Conclusion: Comparison of the BV, SVE and AIBV technologies indicated that all of those technologies are efficient for remediation of unsaturated zone, but after specific remediation time frames, only AIBV able to support guide line values and protect ground waters
    corecore