410 research outputs found
Counting flags in triangle-free digraphs
Motivated by the Caccetta-Haggkvist Conjecture, we prove that every digraph
on n vertices with minimum outdegree 0.3465n contains an oriented triangle.
This improves the bound of 0.3532n of Hamburger, Haxell and Kostochka. The main
new tool we use in our proof is the theory of flag algebras developed recently
by Razborov.Comment: 19 pages, 7 figures; this is the final version to appear in
Combinatoric
Measurement of Returns-to-Scale using Interval Data Envelopment Analysis Models
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI linkThe economic concept of Returns-to-Scale (RTS) has been intensively studied in the context of Data Envelopment Analysis (DEA). The conventional DEA models that are used for RTS classification require well-defined and accurate data whereas in reality observations gathered from production systems may be characterized by intervals. For instance, the heat losses of the combined production of heat and power (CHP) systems may be within a certain range, hinging on a wide variety of factors such as external temperature and real-time energy demand. Enriching the current literature independently tackling the two problems; interval data and RTS estimation; we develop an overarching evaluation process for estimating RTS of Decision Making Units (DMUs) in Imprecise DEA (IDEA) where the input and output data lie within bounded intervals. In the presence of interval data, we introduce six types of RTS involving increasing, decreasing, constant, non-increasing, non-decreasing and variable RTS. The situation for non-increasing (non-decreasing) RTS is then divided into two partitions; constant or decreasing (constant or increasing) RTS using sensitivity analysis. Additionally, the situation for variable RTS is split into three partitions consisting of constant, decreasing and increasing RTS using sensitivity analysis. Besides, we present the stability region of an observation while preserving its current RTS classification using the optimal values of a set of proposed DEA-based models. The applicability and efficacy of the developed approach is finally studied through two numerical examples and a case study
Surface InP Quantum Dots: Effect of Morphology on the Photoluminescence Sensitivity
Abstract An investigation of the photoluminescence sensitivity of epitaxial surface InP quantum dots grown on In 0.48 Ga 0.52 P buffer layer lattice matched to GaAs substrate is presented. The emission wavelength of such quantum dots can be defined through the quantum dot dimensions in the range 750 – 865 nm. Quantum dot exposure to polar solvent vapour (methanol and ethanol) determines in any investigated case a luminescence intensity enhancement. The response to alcohol vapours affects only the luminescence intensity while peak position and shape remain unchanged. Optimization of the sensor response by tailoring quantum dots size and coverage has been demonstrated
Aharonov-Bohm signature for neutral excitons in type-II quantum dot ensembles
It is commonly believed that the Aharonov-Bohm (AB) effect is a typical
feature of the motion of a charged particle interacting with the
electromagnetic vector potential. Here we present a magnetophotoluminescence
study of type-II InP/GaAs self-assembled quantum dots, unambiguously revealing
the Aharonov-Bohm-type oscillations for neutral excitons when the hole ground
state changes its angular momentum from lh = 0 to lh = 1, 2, and 3. The hole
ring parameters derived from a simple model are in excellent agreement with the
structural parameters for this system.Comment: Revised version, 10 pages, 3 figure
Single and vertically coupled type II quantum dots in a perpendicular magnetic field: exciton groundstate properties
The properties of an exciton in a type II quantum dot are studied under the
influence of a perpendicular applied magnetic field. The dot is modelled by a
quantum disk with radius , thickness and the electron is confined in the
disk, whereas the hole is located in the barrier. The exciton energy and
wavefunctions are calculated using a Hartree-Fock mesh method. We distinguish
two different regimes, namely (the hole is located at the radial
boundary of the disk) and (the hole is located above and below the
disk), for which angular momentum transitions are predicted with
increasing magnetic field. We also considered a system of two vertically
coupled dots where now an extra parameter is introduced, namely the interdot
distance . For each and for a sufficient large magnetic field,
the ground state becomes spontaneous symmetry broken in which the electron and
the hole move towards one of the dots. This transition is induced by the
Coulomb interaction and leads to a magnetic field induced dipole moment. No
such symmetry broken ground states are found for a single dot (and for three
vertically coupled symmetric quantum disks). For a system of two vertically
coupled truncated cones, which is asymmetric from the start, we still find
angular momentum transitions. For a symmetric system of three vertically
coupled quantum disks, the system resembles for small the pillar-like
regime of a single dot, where the hole tends to stay at the radial boundary,
which induces angular momentum transitions with increasing magnetic field. For
larger the hole can sit between the disks and the state
remains the groundstate for the whole -region.Comment: 11 pages, 16 figure
Thermally driven spin injection from a ferromagnet into a non-magnetic metal
Creating, manipulating and detecting spin polarized carriers are the key
elements of spin based electronics. Most practical devices use a perpendicular
geometry in which the spin currents, describing the transport of spin angular
momentum, are accompanied by charge currents. In recent years, new sources of
pure spin currents, i.e., without charge currents, have been demonstrated and
applied. In this paper, we demonstrate a conceptually new source of pure spin
current driven by the flow of heat across a ferromagnetic/non-magnetic metal
(FM/NM) interface. This spin current is generated because the Seebeck
coefficient, which describes the generation of a voltage as a result of a
temperature gradient, is spin dependent in a ferromagnet. For a detailed study
of this new source of spins, it is measured in a non-local lateral geometry. We
developed a 3D model that describes the heat, charge and spin transport in this
geometry which allows us to quantify this process. We obtain a spin Seebeck
coefficient for Permalloy of -3.8 microvolt/Kelvin demonstrating that thermally
driven spin injection is a feasible alternative for electrical spin injection
in, for example, spin transfer torque experiments
Cooling and heating with electron spins: Observation of the spin Peltier effect
The Peltier coefficient describes the amount of heat that is carried by an
electrical current when it passes through a material. Connecting two materials
with different Peltier coefficients causes a net heat flow towards or away from
the interface, resulting in cooling or heating at the interface - the Peltier
effect. Spintronics describes the transport of charge and angular momentum by
making use of separate spin-up and spin-down channels. Recently, the merger of
thermoelectricity with spintronics has given rise to a novel and rich research
field named spin caloritronics. Here, we report the first direct experimental
observation of refrigeration/heating driven by a spin current, a new spin
thermoelectric effect which we call the spin Peltier effect. The heat flow is
generated by the spin dependency of the Peltier coefficient inside the
ferromagnetic material. We explored the effect in a specifically designed spin
valve pillar structure by measuring the temperature using an electrically
isolated thermocouple. The difference in heat flow between the two magnetic
configurations leads to a change in temperature. With the help of 3-D finite
element modeling, we extracted permalloy spin Peltier coefficients in the range
of -0.9 to -1.3 mV. These results enable magnetic control of heat flow and
provide new functionality for future spintronic devices
- …