22 research outputs found

    How antimalarial drug resistance affects post-treatment prophylaxis

    Get PDF
    Slowly eliminated antimalarial drugs suppress malaria reinfections for a period of time determined by the dose, the pharmacokinetic properties of the drug, and the susceptibility of the infecting parasites. This effect is called post-treatment prophylaxis (PTP). The clinical benefits of preventing recrudescence (reflecting treatment efficacy) compared with preventing reinfection (reflecting PTP) need further assessment. Antimalarial drug resistance shortens PTP. While blood concentrations are in the terminal elimination phase, the degree of shortening may be estimated from measurements of in-vitro susceptibility and the terminal elimination half-life. More information is needed on PTP following intermittent preventive treatments, and on the relationship between the duration of PTP and immunity, so that policy recommendations can have a firmer evidence base

    Dihydroartemisinin-Piperaquine vs. Artemether-Lumefantrine for First-Line Treatment of Uncomplicated Malaria in African Children: A Cost-Effectiveness Analysis.

    Get PDF
    Recent multi-centre trials showed that dihydroartemisinin-piperaquine (DP) was as efficacious and safe as artemether-lumefantrine (AL) for treatment of young children with uncomplicated P. falciparum malaria across diverse transmission settings in Africa. Longitudinal follow-up of patients in these trials supported previous findings that DP had a longer post-treatment prophylactic effect than AL, reducing the risk of reinfection and conferring additional health benefits to patients, particularly in areas with moderate to high malaria transmission. We developed a Markov model to assess the cost-effectiveness of DP versus AL for first-line treatment of uncomplicated malaria in young children from the provider perspective, taking into consideration the post-treatment prophylactic effects of the drugs as reported by a recent multi-centre trial in Africa and using the maximum manufacturer drug prices for artemisinin-based combination therapies set by the Global Fund in 2013. We estimated the price per course of treatment threshold above which DP would cease to be a cost-saving alternative to AL as a first-line antimalarial drug. First-line treatment with DP compared to AL averted 0.03 DALYs (95% CI: 0.006-0.07) and 0.001 deaths (95% CI: 0.00-0.002) and saved 0.96(950.96 (95% CI: 0.33-2.46) per child over one year. The results of the threshold analysis showed that DP remained cost-saving over AL for any DP cost below 1.23 per course of treatment. DP is superior to AL from both the clinical and economic perspectives for treatment of uncomplicated P. falciparum malaria in young children. A paediatric dispersible formulation of DP is under development and should facilitate a targeted deployment of this antimalarial drug. The use of DP as first-line antimalarial drug in paediatric malaria patients in moderate to high transmission areas of Africa merits serious consideration by health policymakers

    Plasmodium falciparum Gametocyte Carriage Is Associated with Subsequent Plasmodium vivax Relapse after Treatment

    Get PDF
    Mixed P. falciparum/P. vivax infections are common in southeast Asia. When patients with P. falciparum malaria are treated and followed for several weeks, a significant proportion will develop P. vivax malaria. In a combined analysis of 243 patients recruited to two malaria treatment trials in western Cambodia, 20/43 (47%) of those with P. falciparum gametocytes on admission developed P. vivax malaria by Day 28 of follow-up. The presence of Pf gametocytes on an initial blood smear was associated with a 3.5-fold greater rate of vivax parasitemia post-treatment (IRR = 3.5, 95% CI 2.0–6.0, p<0.001). The increased rate of post-treatment P. vivax infection persisted when correlates of exposure and immunity such as a history of malaria, male gender, and age were controlled for (IRR = 3.0, 95% CI 1.9–4.7, p<0.001). Polymerase chain reaction (PCR) confirmed that only a low proportion of subjects (5/55 or 9.1%) who developed vivax during follow-up had detectable Pv parasites in the peripheral blood at baseline. Molecular detection of falciparum gametocytes by reverse transcriptase PCR in a subset of patients strengthened the observed association, while PCR detection of Pv parasitemia at follow-up was similar to microscopy results. These findings suggest that the majority of vivax infections arising after treatment of falciparum malaria originate from relapsing liver-stage parasites. In settings such as western Cambodia, the presence of both sexual and asexual forms of P. falciparum on blood smear at presentation with acute falciparum malaria serves as a marker for possible occult P. vivax coinfection and subsequent relapse. These patients may benefit from empiric treatment with an 8-aminoquinolone such as primaquine

    Dihydroartemisinin-Piperaquine and Artemether-Lumefantrine for Treating Uncomplicated Malaria in African Children: A Randomised, Non-Inferiority Trial

    Get PDF
    BACKGROUND: Artemisinin combination therapies (ACTs) are currently the preferred option for treating uncomplicated malaria. Dihydroartemisinin-piperaquine (DHA-PQP) is a promising fixed-dose ACT with limited information on its safety and efficacy in African children. METHODOLOGY/PRINCIPAL FINDINGS: The non-inferiority of DHA-PQP versus artemether-lumefantrine (AL) in children 6-59 months old with uncomplicated P. falciparum malaria was tested in five African countries (Burkina Faso, Kenya, Mozambique, Uganda and Zambia). Patients were randomised (2:1) to receive either DHA-PQP or AL. Non-inferiority was assessed using a margin of -5% for the lower limit of the one-sided 97.5% confidence interval on the treatment difference (DHA-PQP vs. AL) of the day 28 polymerase chain reaction (PCR) corrected cure rate. Efficacy analysis was performed in several populations, and two of them are presented here: intention-to-treat (ITT) and enlarged per-protocol (ePP). 1553 children were randomised, 1039 receiving DHA-PQP and 514 AL. The PCR-corrected day 28 cure rate was 90.4% (ITT) and 94.7% (ePP) in the DHA-PQP group, and 90.0% (ITT) and 95.3% (ePP) in the AL group. The lower limits of the one-sided 97.5% CI of the difference between the two treatments were -2.80% and -2.96%, in the ITT and ePP populations, respectively. In the ITT population, the Kaplan-Meier estimate of the proportion of new infections up to Day 42 was 13.55% (95% CI: 11.35%-15.76%) for DHA-PQP vs 24.00% (95% CI: 20.11%-27.88%) for AL (p<0.0001). CONCLUSIONS/SIGNIFICANCE: DHA-PQP is as efficacious as AL in treating uncomplicated malaria in African children from different endemicity settings, and shows a comparable safety profile. The occurrence of new infections within the 42-day follow up was significantly lower in the DHA-PQP group, indicating a longer post-treatment prophylactic effect. TRIAL REGISTRATION: Controlled-trials.com ISRCTN16263443

    The efficacy and safety of a new fixed-dose combination of amodiaquine and artesunate in young African children with acute uncomplicated Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artesunate (AS) plus amodiaquine (AQ) is one artemisinin-based combination (ACT) recommended by the WHO for treating <it>Plasmodium falciparum </it>malaria. Fixed-dose AS/AQ is new, but its safety and efficacy are hitherto untested.</p> <p>Methods</p> <p>A randomized, open-label trial was conducted comparing the efficacy (non-inferiority design) and safety of fixed (F) dose AS (25 mg)/AQ (67.5 mg) to loose (L) AS (50 mg) + AQ (153 mg) in 750, <it>P</it>. <it>falciparum</it>-infected children from Burkina Faso aged 6 months to 5 years. Dosing was by age. Primary efficacy endpoint was Day (D) 28, PCR-corrected, parasitological cure rate. Recipients of rescue treatment were counted as failures and new infections as cured. Documented, common toxicity criteria (CTC) graded adverse events (AEs) defined safety.</p> <p>Results</p> <p>Recruited and evaluable children numbered 750 (375/arm) and 682 (90.9%), respectively. There were 8 (AS/AQ) and 6 (AS+AQ) early treatment failures and one D7 failure (AS+AQ). Sixteen (AS/AQ) and 12 (AS+AQ) patients had recurrent parasitaemia (PCR new infections 10 and 6, respectively). Fourteen patients per arm required rescue treatment for vomiting/spitting out study drugs. Efficacy rates were 92.1% in both arms: AS/AQ = 315/342 (95% CI: 88.7–94.7) vs. AS+AQ = 313/340 (95% CI: 88.6–94.7). Non-inferiority was demonstrated at two-sided α = 0.05: Δ (AS+AQ – AS/AQ) = 0.0% (95% CI: -4.1% to 4.0%). D28, Kaplan Meier PCR-corrected cure rates (all randomized children) were similar: 93.7% (AS/AQ) vs. 93.2% (AS+AQ) Δ = -0.5 (95% CI -4.2 to 3.0%). By D2, both arms had rapid parasite (F & L, 97.8% aparasitaemic) and fever (97.2% [F], 96.0% [L] afebrile) clearances.</p> <p>Both treatments were well tolerated. Drug-induced vomiting numbered 8/375 (2.1%) and 6/375 (1.6%) in the fixed and loose arms, respectively (<it>p </it>= 0.59). One patient developed asymptomatic, CTC grade 4 hepatitis (AST 1052, ALT 936). Technical difficulties precluded the assessment and risk of neutropaenia for all patients.</p> <p>Conclusion</p> <p>Fixed dose AS/AQ was efficacious and well tolerated. These data support the use of this new fixed dose combination for treating <it>P. falciparum </it>malaria with continued safety monitoring.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN07576538</p

    Efficacy of artesunate-amodiaquine for treating uncomplicated falciparum malaria in sub-Saharan Africa: a multi-centre analysis

    Get PDF
    BACKGROUND: Artesunate and amodiaquine (AS&AQ) is at present the world's second most widely used artemisinin-based combination therapy (ACT). It was necessary to evaluate the efficacy of ACT, recently adopted by the World Health Organization (WHO) and deployed over 80 countries, in order to make an evidence-based drug policy. METHODS: An individual patient data (IPD) analysis was conducted on efficacy outcomes in 26 clinical studies in sub-Saharan Africa using the WHO protocol with similar primary and secondary endpoints. RESULTS: A total of 11,700 patients (75% under 5 years old), from 33 different sites in 16 countries were followed for 28 days. Loss to follow-up was 4.9% (575/11,700). AS&AQ was given to 5,897 patients. Of these, 82% (4,826/5,897) were included in randomized comparative trials with polymerase chain reaction (PCR) genotyping results and compared to 5,413 patients (half receiving an ACT). AS&AQ and other ACT comparators resulted in rapid clearance of fever and parasitaemia, superior to non-ACT. Using survival analysis on a modified intent-to-treat population, the Day 28 PCR-adjusted efficacy of AS&AQ was greater than 90% (the WHO cut-off) in 11/16 countries. In randomized comparative trials (n = 22), the crude efficacy of AS&AQ was 75.9% (95% CI 74.6-77.1) and the PCR-adjusted efficacy was 93.9% (95% CI 93.2-94.5). The risk (weighted by site) of failure PCR-adjusted of AS&AQ was significantly inferior to non-ACT, superior to dihydroartemisinin-piperaquine (DP, in one Ugandan site), and not different from AS+SP or AL (artemether-lumefantrine). The risk of gametocyte appearance and the carriage rate of AS&AQ was only greater in one Ugandan site compared to AL and DP, and lower compared to non-ACT (p = 0.001, for all comparisons). Anaemia recovery was not different than comparator groups, except in one site in Rwanda where the patients in the DP group had a slower recovery. CONCLUSION: AS&AQ compares well to other treatments and meets the WHO efficacy criteria for use against falciparum malaria in many, but not all, the sub-Saharan African countries where it was studied. Efficacy varies between and within countries. An IPD analysis can inform general and local treatment policies. Ongoing monitoring evaluation is required

    Dihydroartemisinin-piperaquine versus artesunate-amodiaquine: superior efficacy and posttreatment prophylaxis against multidrug-resistant Plasmodium falciparum and Plasmodium vivax malaria.

    No full text
    BACKGROUND: Antimalarial drug resistance is now well established in both Plasmodium falciparum and Plasmodium vivax. In southern Papua, Indonesia, where both strains of plasmodia coexist, we have been conducting a series of studies to optimize treatment strategies. METHODS: We conducted a randomized trial that compared the efficacy and safety of dihydroartemisinin-piperaquine (DHP) with artesunate-amodiaquine (AAQ). The primary end point was the overall cumulative parasitological failure rate at day 42. RESULTS: Of the 334 patients in the evaluable patient population, 185 were infected with P. falciparum, 80 were infected with P. vivax, and 69 were infected with both species. The overall parasitological failure rate at day 42 was 45% (95% confidence interval [CI], 36%-53%) for AAQ and 13% (95% CI, 7.2%-19%) for DHP (hazard ratio [HR], 4.3; 95% CI, 2.5-7.2; P&lt;.001). Rates of both recrudescence of P. falciparum infection and recurrence of P. vivax infection were significantly higher after receipt of AAQ than after receipt of DHP (HR, 3.4 [95% CI, 1.2-9.4] and 4.3 [95% CI, 2.2-8.2], respectively; P&lt;.001). By the end of the study, AAQ recipients were 2.95-fold (95% CI, 1.2- to 4.9-fold) more likely to be anemic and 14.5-fold (95% CI, 3.4- to 61-fold) more likely to have carried P. vivax gametocytes. CONCLUSIONS: DHP was more effective and better tolerated than AAQ against multidrug-resistant P. falciparum and P. vivax infections. The prolonged therapeutic effect of piperaquine delayed the time to P. falciparum reinfection, decreased the rate of recurrence of P. vivax infection, and reduced the risk of P. vivax gametocyte carriage and anemia

    Gametocyte dynamics and the role of drugs in reducing the transmission potential of Plasmodium vivax.

    Get PDF
    BACKGROUND: Designing interventions that will reduce transmission of vivax malaria requires knowledge of Plasmodium vivax gametocyte dynamics. METHODS: We analyzed data from a randomized controlled trial in northwestern Thailand and 2 trials in Papua, Indonesia, to identify and compare risk factors for vivax gametocytemia at enrollment and following treatment. RESULTS: A total of 492 patients with P. vivax infections from Thailand and 476 patients (162 with concurrent falciparum parasitemia) from Indonesia were evaluable. Also, 84.3% (415/492) and 66.6% (209/314) of patients with monoinfection were gametocytemic at enrollment, respectively. The ratio of gametocytemia to asexual parasitemia did not differ between acute and recurrent infections (P = .48 in Thailand, P = .08 in Indonesia). High asexual parasitemia was associated with an increased risk of gametocytemia during follow-up in both locations. In Thailand, the cumulative incidence of gametocytemia between day 7 and day 42 following dihydroartemisinin + piperaquine (DHA + PIP) was 6.92% vs 29.1% following chloroquine (P &lt; .001). In Indonesia, the incidence of gametocytemia was 33.6% following artesunate + amodiaquine (AS + AQ), 7.42% following artemether + lumefantrine, and 6.80% following DHA + PIP (P &lt; .001 for DHA + PIP vs AS + AQ). CONCLUSIONS: P. vivax gametocyte carriage mirrors asexual-stage infection. Prevention of relapses, particularly in those with high asexual parasitemia, is likely the most important strategy for interrupting P. vivax transmission
    corecore