23 research outputs found

    Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic)

    Get PDF
    Genetic test results can have considerable importance for patients, their parents and more remote family members. Clinical therapy and surveillance, reproductive decisions and genetic diagnostics in family members, including prenatal diagnosis, are based on these results. The genetic test report should therefore provide a clear, concise, accurate, fully interpretative and authoritative answer to the clinical question. The need for harmonizing reporting practice of genetic tests has been recognised by the External Quality Assessment (EQA), providers and laboratories. The ESHG Genetic Services Quality Committee has produced reporting guidelines for the genetic disciplines (biochemical, cytogenetic and molecular genetic). These guidelines give assistance on report content, including the interpretation of results. Selected examples of genetic test reports for all three disciplines are provided in an annexe.</p

    The changing landscape of genetic testing and its impact on clinical and laboratory services and research in Europe

    Get PDF
    The arrival of new genetic technologies that allow efficient examination of the whole human genome (microarray, next-generation sequencing) will impact upon both laboratories (cytogenetic and molecular genetics in the first instance) and clinical/medical genetic services. The interpretation of analytical results in terms of their clinical relevance and the predicted health status poses a challenge to both laboratory and clinical geneticists, due to the wealth and complexity of the information obtained. There is a need to discuss how to best restructure the genetic services logistically and to determine the clinical utility of genetic testing so that patients can receive appropriate advice and genetic testing. To weigh up the questions and challenges of the new genetic technologies, the European Society of Human Genetics (ESHG) held a series of workshops on 10 June 2010 in Gothenburg. This was part of an ESHG satellite symposium on the 'Changing landscape of genetic testing', co-organized by the ESHG Genetic Services Quality and Public and Professional Policy Committees. The audience consisted of a mix of geneticists, ethicists, social scientists and lawyers. In this paper, we summarize the discussions during the workshops and present some of the identified ways forward to improve and adapt the genetic services so that patients receive accurate and relevant information. This paper covers ethics, clinical utility, primary care, genetic services and the blurring boundaries between healthcare and research

    The practical implications when finding chromosome abnormalities

    No full text

    Recommended practice for laboratory reporting of non-invasive prenatal testing of trisomies 13, 18 and 21: a consensus opinion

    No full text
    Objective: Non-invasive prenatal testing (NIPT) for trisomies 13, 18 and 21 is used worldwide. Laboratory reports should provide clear, concise results with test limitations indicated, yet no national or local guidelines are currently available. Here, we aim to present minimum best practice guidelines. Methods: All laboratories registered in the three European quality assurance schemes for molecular and cytogenetics were invited to complete an online survey focused on services provided for NIPT and non-invasive prenatal diagnosis. Laboratories delivering NIPT for aneuploidy were asked to submit two example reports; one high and one low risk result. Reports were reviewed for content and discussed at a meeting of laboratory providers and clinicians held at the ISPD 2016 conference in Berlin. Results: Of the 122 laboratories that responded, 50 issued reports for NIPT and 43 of these submitted sample reports. Responses and reports were discussed by 72 attendees at the meeting. Consensus opinion was determined in several areas and used to develop best practice guidelines for reporting of NIPT results. Conclusions: Across Europe, there is considerable variation in reporting NIPT results. Here, we describe minimum best practice guidelines, which will be distributed to European laboratories, and reports audited in subsequent external quality assurance cycles

    The introduction of arrays in prenatal diagnosis: A special challenge

    No full text
    Genome-wide arrays are rapidly replacing conventional karyotyping in postnatal cytogenetic diagnostics and there is a growing request for arrays in the prenatal setting. Several studies have documented 1-3% additional abnormal findings in prenatal diagnosis with arrays compared to conventional karyotyping. A recent meta-analysis demonstrated that 5.2% extra diagnoses can be expected in fetuses with ultrasound abnormalities. However, no consensus exists as to whether the use of genome-wide arrays should be restricted to pregnancies with ultrasound abnormalities, performed in all women undergoing invasive prenatal testing or offered to all pregnant women. Moreover, the interpretation of array results in the prenatal situation is challenging due to the large numbers of copy number variants with no major phenotypic effect. This also raises the question of what, or what not to report, for example, how to deal with unsolicited findings. These issues were discussed at a working group meeting that preceded the European Society of Human Genetics 2011 Conference in Amsterdam. This article is the result of this meeting and explores the introduction of genome-wide arrays into routine prenatal diagnosis. We aim to give some general recommendations on how to develop practical guidelines that can be implemented in the local setting and that are consistent with the emerging international consensus. Hum Mutat 33:923-929, 2012. © 2012 Wiley Periodicals, Inc.status: publishe

    The Introduction of Arrays in Prenatal Diagnosis:A Special Challenge

    No full text
    Genome-wide arrays are rapidly replacing conventional karyotyping in postnatal cytogenetic diagnostics and there is a growing request for arrays in the prenatal setting. Several studies have documented 1-3% additional abnormal findings in prenatal diagnosis with arrays compared to conventional karyotyping. A recent meta-analysis demonstrated that 5.2% extra diagnoses can be expected in fetuses with ultrasound abnormalities. However, no consensus exists as to whether the use of genome-wide arrays should be restricted to pregnancies with ultrasound abnormalities, performed in all women undergoing invasive prenatal testing or offered to all pregnant women. Moreover, the interpretation of array results in the prenatal situation is challenging due to the large numbers of copy number variants with no major phenotypic effect. This also raises the question of what, or what not to report, for example, how to deal with unsolicited findings. These issues were discussed at a working group meeting that preceded the European Society of Human Genetics 2011 Conference in Amsterdam. This article is the result of this meeting and explores the introduction of genome-wide arrays into routine prenatal diagnosis. We aim to give some general recommendations on how to develop practical guidelines that can be implemented in the local setting and that are consistent with the emerging international consensus. Hum Mutat 33: 923-929, 2012. (C) 2012 Wiley Periodicals, Inc
    corecore