7,384 research outputs found

    Sufficient Conditions for Topological Order in Insulators

    Full text link
    We prove the existence of low energy excitations in insulating systems at general filling factor under certain conditions, and discuss in which cases these may be identified as topological excitations. This proof is based on previously proven locality results. In the case of half-filling it provides a significantly shortened proof of the recent higher dimensional Lieb-Schultz-Mattis theorem.Comment: 7 pages, no figure

    Quasi-Adiabatic Continuation in Gapped Spin and Fermion Systems: Goldstone's Theorem and Flux Periodicity

    Full text link
    We apply the technique of quasi-adiabatic continuation to study systems with continuous symmetries. We first derive a general form of Goldstone's theorem applicable to gapped nonrelativistic systems with continuous symmetries. We then show that for a fermionic system with a spin gap, it is possible to insert π\pi-flux into a cylinder with only exponentially small change in the energy of the system, a scenario which covers several physically interesting cases such as an s-wave superconductor or a resonating valence bond state.Comment: 19 pages, 2 figures, final version in press at JSTA

    Systematic Series Expansions for Processes on Networks

    Full text link
    We use series expansions to study dynamics of equilibrium and non-equilibrium systems on networks. This analytical method enables us to include detailed non-universal effects of the network structure. We show that even low order calculations produce results which compare accurately to numerical simulation, while the results can be systematically improved. We show that certain commonly accepted analytical results for the critical point on networks with a broad degree distribution need to be modified in certain cases due to disassortativity; the present method is able to take into account the assortativity at sufficiently high order, while previous results correspond to leading and second order approximations in this method. Finally, we apply this method to real-world data.Comment: 4 pages, 3 figure

    Theory of plasma contactors in ground-based experiments and low Earth orbit

    Get PDF
    Previous theoretical work on plasma contactors as current collectors has fallen into two categories: collisionless double layer theory (describing space charge limited contactor clouds) and collisional quasineutral theory. Ground based experiments at low current are well explained by double layer theory, but this theory does not scale well to power generation by electrodynamic tethers in space, since very high anode potentials are needed to draw a substantial ambient electron current across the magnetic field in the absence of collisions (or effective collisions due to turbulence). Isotropic quasineutral models of contactor clouds, extending over a region where the effective collision frequency upsilon sub e exceeds the electron cyclotron frequency omega sub ce, have low anode potentials, but would collect very little ambient electron current, much less than the emitted ion current. A new model is presented, for an anisotropic contactor cloud oriented along the magnetic field, with upsilon sub e less than omega sub ce. The electron motion along the magnetic field is nearly collisionless, forming double layers in that direction, while across the magnetic field the electrons diffuse collisionally and the potential profile is determined by quasineutrality. Using a simplified expression for upsilon sub e due to ion acoustic turbulence, an analytic solution has been found for this model, which should be applicable to current collection in space. The anode potential is low and the collected ambient electron current can be several times the emitted ion current

    Strong and weak thermalization of infinite non-integrable quantum systems

    Full text link
    When a non-integrable system evolves out of equilibrium for a long time, local observables are expected to attain stationary expectation values, independent of the details of the initial state. However, intriguing experimental results with ultracold gases have shown no thermalization in non-integrable settings, triggering an intense theoretical effort to decide the question. Here we show that the phenomenology of thermalization in a quantum system is much richer than its classical counterpart. Using a new numerical technique, we identify two distinct thermalization regimes, strong and weak, occurring for different initial states. Strong thermalization, intrinsically quantum, happens when instantaneous local expectation values converge to the thermal ones. Weak thermalization, well-known in classical systems, happens when local expectation values converge to the thermal ones only after time averaging. Remarkably, we find a third group of states showing no thermalization, neither strong nor weak, to the time scales one can reliably simulate.Comment: 12 pages, 21 figures, including additional materia

    Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity

    Full text link
    It has become widely accepted that the most dangerous cardiac arrhythmias are due to re- entrant waves, i.e., electrical wave(s) that re-circulate repeatedly throughout the tissue at a higher frequency than the waves produced by the heart's natural pacemaker (sinoatrial node). However, the complicated structure of cardiac tissue, as well as the complex ionic currents in the cell, has made it extremely difficult to pinpoint the detailed mechanisms of these life-threatening reentrant arrhythmias. A simplified ionic model of the cardiac action potential (AP), which can be fitted to a wide variety of experimentally and numerically obtained mesoscopic characteristics of cardiac tissue such as AP shape and restitution of AP duration and conduction velocity, is used to explain many different mechanisms of spiral wave breakup which in principle can occur in cardiac tissue. Some, but not all, of these mechanisms have been observed before using other models; therefore, the purpose of this paper is to demonstrate them using just one framework model and to explain the different parameter regimes or physiological properties necessary for each mechanism (such as high or low excitability, corresponding to normal or ischemic tissue, spiral tip trajectory types, and tissue structures such as rotational anisotropy and periodic boundary conditions). Each mechanism is compared with data from other ionic models or experiments to illustrate that they are not model-specific phenomena. The fact that many different breakup mechanisms exist has important implications for antiarrhythmic drug design and for comparisons of fibrillation experiments using different species, electromechanical uncoupling drugs, and initiation protocols.Comment: 128 pages, 42 figures (29 color, 13 b&w

    Fractal to Nonfractal Phase Transition in the Dielectric Breakdown Model

    Full text link
    A fast method is presented for simulating the dielectric-breakdown model using iterated conformal mappings. Numerical results for the dimension and for corrections to scaling are in good agreement with the recent RG prediction of an upper critical ηc=4\eta_c=4, at which a transition occurs between branching fractal clusters and one-dimensional nonfractal clusters.Comment: 5 pages, 7 figures; corrections to scaling include

    Multiscaling at Point J: Jamming is a Critical Phenomenon

    Full text link
    We analyze the jamming transition that occurs as a function of increasing packing density in a disordered two-dimensional assembly of disks at zero temperature for ``Point J'' of the recently proposed jamming phase diagram. We measure the total number of moving disks and the transverse length of the moving region, and find a power law divergence as the packing density increases toward a critical jamming density. This provides evidence that the T = 0 jamming transition as a function of packing density is a {\it second order} phase transition. Additionally we find evidence for multiscaling, indicating the importance of long tails in the velocity fluctuations.Comment: 4 pages, 5 figures; extensive new numerical data; final version in press at PR
    • …
    corecore