2,550 research outputs found
Picosecond timing of Microwave Cherenkov Impulses from High-Energy Particle Showers Using Dielectric-loaded Waveguides
We report on the first measurements of coherent microwave impulses from
high-energy particle-induced electromagnetic showers generated via the Askaryan
effect in a dielectric-loaded waveguide. Bunches of 12.16 GeV electrons with
total bunch energy of  GeV were pre-showered in tungsten, and
then measured with WR-51 rectangular (12.6 mm by 6.3 mm) waveguide elements
loaded with solid alumina () bars. In the 5-8 GHz 
single-mode band determined by the presence of the dielectric in the waveguide,
we observed band-limited microwave impulses with amplitude proportional to
bunch energy. Signals in different waveguide elements measuring the same shower
were used to estimate relative time differences with 2.3 picosecond precision.
These measurements establish a basis for using arrays of alumina-loaded
waveguide elements, with exceptional radiation hardness, as very high precision
timing planes for high-energy physics detectors.Comment: 16 pages, 15 figure
The Electromagnetic Background Environment for the Interaction-point Beam Feedback System at the ILC
Accelerator measurements of magnetically-induced radio emission from particle cascades with applications to cosmic-ray air showers
For fifty years, cosmic-ray air showers have been detected by their radio
emission. We present the first laboratory measurements that validate
electrodynamics simulations used in air shower modeling. An experiment at SLAC
provides a beam test of radio-frequency (RF) radiation from charged particle
cascades in the presence of a magnetic field, a model system of a cosmic-ray
air shower. This experiment provides a suite of controlled laboratory
measurements to compare to particle-level simulations of RF emission, which are
relied upon in ultra-high-energy cosmic-ray air shower detection. We compare
simulations to data for intensity, linearity with magnetic field, angular
distribution, polarization, and spectral content. In particular, we confirm
modern predictions that the magnetically induced emission in a dielectric forms
a cone that peaks at the Cherenkov angle and show that the simulations
reproduce the data within systematic uncertainties.Comment: 5 pages, 7 figure
Observations of the Askaryan Effect in Ice
We report on the first observations of the Askaryan effect in ice: coherent
impulsive radio Cherenkov radiation from the charge asymmetry in an
electromagnetic (EM) shower. Such radiation has been observed in silica sand
and rock salt, but this is the first direct observation from an EM shower in
ice. These measurements are important since the majority of experiments to date
that rely on the effect for ultra-high energy neutrino detection are being
performed using ice as the target medium. As part of the complete validation
process for the Antarctic Impulsive Transient Antenna (ANITA) experiment, we
performed an experiment at the Stanford Linear Accelerator Center (SLAC) in
June 2006 using a 7.5 metric ton ice target, yielding results fully consistent
with theoretical expectations.Comment: 4 pages, 5 figures, minor correction
New Limits on the Ultra-high Energy Cosmic Neutrino Flux from the ANITA Experiment
We report initial results of the first flight of the Antarctic Impulsive
Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which
searched for evidence of a diffuse flux of cosmic neutrinos above energies of 3
EeV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan
effect in neutrino-induced electromagnetic showers within the Antarctic ice
sheets. We report here on our initial analysis, which was performed as a blind
search of the data. No neutrino candidates are seen, with no detected physics
background. We set model-independent limits based on this result. Upper limits
derived from our analysis rule out the highest cosmogenic neutrino models. In a
background horizontal-polarization channel, we also detect six events
consistent with radio impulses from ultra-high energy extensive air showers.Comment: 4 pages, 2 table
Observations of Microwave Continuum Emission from Air Shower Plasmas
We investigate a possible new technique for microwave measurements of
ultra-high energy cosmic ray (UHECR) extensive air showers which relies on
detection of expected continuum radiation in the microwave range, caused by
free-electron collisions with neutrals in the tenuous plasma left after the
passage of the shower. We performed an initial experiment at the AWA (Argonne
Wakefield Accelerator) laboratory in 2003 and measured broadband microwave
emission from air ionized via high energy electrons and photons. A follow-up
experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004
confirmed the major features of the previous AWA observations with better
precision and made additional measurements relevant to the calorimetric
capabilities of the method. Prompted by these results we built a prototype
detector using satellite television technology, and have made measurements
indicating possible detection of cosmic ray extensive air showers. The method,
if confirmed by experiments now in progress, could provide a high-duty cycle
complement to current nitrogen fluorescence observations of UHECR, which are
limited to dark, clear nights. By contrast, decimeter microwave observations
can be made both night and day, in clear or cloudy weather, or even in the
presence of moderate precipitation.Comment: 15 pages, 13 figure
Observations of the Askaryan Effect in Ice
We report on the first observations of the Askaryan effect in ice: coherent impulsive radio Cherenkov radiation from the charge asymmetry in an electromagnetic (EM) shower. Such radiation has been observed in silica sand and rock salt, but this is the first direct observation from an EM shower in ice. These measurements are important since the majority of experiments to date that rely on the effect for ultra-high energy neutrino detection are being performed using ice as the target medium. As part of the complete validation process for the Antarctic Impulsive Transient Antenna (ANITA) experiment, we performed an experiment at the Stanford Linear Accelerator Center (SLAC) in June 2006 using a 7.5 metric ton ice target, yielding results fully consistent with theoretical expectations
- …
