149 research outputs found
Interviewing to Understand Strengths
Interviewing clients about their strengths is an important part of developing a complete understanding of their lives and hasseveral advantages over simply focusing on problems and pathology. Prerequisites for skillfully interviewing for strengths include the communication skills that emerge from a stance of not knowing, developing a vocabulary of strengths that allows practitionersto identify and name them, and having a “ear for strengths.” Building on this, Saleebey (2008) offers a framework of eight types of questions that allow us to explore strengths in depth with clients
Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism
We describe a perithecial, pleomorphic ascomycetous fungus from the Early Devonian (400 mya) Rhynie chert; the fungus occurs in the cortex just beneath the epidermis of aerial stems and rhizomes of the vascular plant Asteroxylon. Perithecia are nearly spherical with a short, ostiolate neck that extends into a substomatal chamber of the host plant; periphyses line the inner surface of the ostiole. The ascocarp wall is multilayered and formed of septate hyphae; extending from the inner surface are elongate asci interspersed with delicate paraphyses. Asci appear to be unitunicate and contain up to 16 smooth, uniseriate-biseriate ascospores. The method of ascospore liberation is unknown; however, the tip of the ascus is characterized by a narrow, slightly elevated circular collar. Ascospores appear 1–5 celled, and germination is from one end of the spore. Also present along the stems and interspersed among the perithecia are acervuli of conidiophores that are interpreted as the anamorph of the fungus. Conidiogenesis is thallic, basipetal and probably of the holoarthric-type; arthrospores are cube-shaped. Some perithecia contain mycoparasites in the form of hyphae and thick-walled spores of various sizes. The structure and morphology of the fossil fungus is compared with modern ascomycetes that produce perithecial ascocarps, and characters that define the fungus are considered in the context of ascomycete phylogeny
Cross-Modal Distortion of Time Perception: Demerging the Effects of Observed and Performed Motion
Temporal information is often contained in multi-sensory stimuli, but it is currently unknown how the brain combines e.g. visual and auditory cues into a coherent percept of time. The existing studies of cross-modal time perception mainly support the “modality appropriateness hypothesis”, i.e. the domination of auditory temporal cues over visual ones because of the higher precision of audition for time perception. However, these studies suffer from methodical problems and conflicting results. We introduce a novel experimental paradigm to examine cross-modal time perception by combining an auditory time perception task with a visually guided motor task, requiring participants to follow an elliptic movement on a screen with a robotic manipulandum. We find that subjective duration is distorted according to the speed of visually observed movement: The faster the visual motion, the longer the perceived duration. In contrast, the actual execution of the arm movement does not contribute to this effect, but impairs discrimination performance by dual-task interference. We also show that additional training of the motor task attenuates the interference, but does not affect the distortion of subjective duration. The study demonstrates direct influence of visual motion on auditory temporal representations, which is independent of attentional modulation. At the same time, it provides causal support for the notion that time perception and continuous motor timing rely on separate mechanisms, a proposal that was formerly supported by correlational evidence only. The results constitute a counterexample to the modality appropriateness hypothesis and are best explained by Bayesian integration of modality-specific temporal information into a centralized “temporal hub”
Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes
As a new form of carbon, graphene is attracting intense interest as an electrode material with widespread applications. In the present study, the heterogeneous electron transfer (ET) activity of graphene is investigated using scanning electrochemical cell microscopy (SECCM), which allows electrochemical currents to be mapped at high spatial resolution across a surface for correlation with the corresponding structure and properties of the graphene surface. We establish that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and show that the stacking in multilayers also has a subtle influence on ET kinetics. © 2012 American Chemical Society
Ranking Network of a Captive Rhesus Macaque Society: A Sophisticated Corporative Kingdom
We develop a three-step computing approach to explore a hierarchical ranking network for a society of captive rhesus macaques. The computed network is sufficiently informative to address the question: Is the ranking network for a rhesus macaque society more like a kingdom or a corporation? Our computations are based on a three-step approach. These steps are devised to deal with the tremendous challenges stemming from the transitivity of dominance as a necessary constraint on the ranking relations among all individual macaques, and the very high sampling heterogeneity in the behavioral conflict data. The first step simultaneously infers the ranking potentials among all network members, which requires accommodation of heterogeneous measurement error inherent in behavioral data. Our second step estimates the social rank for all individuals by minimizing the network-wide errors in the ranking potentials. The third step provides a way to compute confidence bounds for selected empirical features in the social ranking. We apply this approach to two sets of conflict data pertaining to two captive societies of adult rhesus macaques. The resultant ranking network for each society is found to be a sophisticated mixture of both a kingdom and a corporation. Also, for validation purposes, we reanalyze conflict data from twenty longhorn sheep and demonstrate that our three-step approach is capable of correctly computing a ranking network by eliminating all ranking error
Least area incompressible surfaces in 3-manifolds
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46610/1/222_2005_Article_BF02095997.pd
The N-Terminal Domain of the Arenavirus L Protein Is an RNA Endonuclease Essential in mRNA Transcription
Arenaviridae synthesize viral mRNAs using short capped primers presumably acquired from cellular transcripts by a ‘cap-snatching’ mechanism. Here, we report the crystal structure and functional characterization of the N-terminal 196 residues (NL1) of the L protein from the prototypic arenavirus: lymphocytic choriomeningitis virus. The NL1 domain is able to bind and cleave RNA. The 2.13 Å resolution crystal structure of NL1 reveals a type II endonuclease α/β architecture similar to the N-terminal end of the influenza virus PA protein. Superimposition of both structures, mutagenesis and reverse genetics studies reveal a unique spatial arrangement of key active site residues related to the PD…(D/E)XK type II endonuclease signature sequence. We show that this endonuclease domain is conserved and active across the virus families Arenaviridae, Bunyaviridae and Orthomyxoviridae and propose that the arenavirus NL1 domain is the Arenaviridae cap-snatching endonuclease
Epigenetic regulation of caloric restriction in aging
The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases
- …