1,875 research outputs found
Stepwise transition from deglacial/Early Holocene to modern-like conditions in the eastern Fram Strait, sub-Arctic north, inferred from planktic foraminifer fauna and sea surface temperatures
EGU2012-4750
The heat content of the Arctic Ocean is mainly controlled by the inflow of north-heading warm and saline Atlantic Water through eastern Fram Strait. The eastern Fram Strait is therefore ice-free all year, opposite to its perennially ice-covered western part where large amounts of Arctic sea ice are exported year-round to the Nordic Seas. The Early and Mid-Holocene phases (ca 12 to 5 cal ka BP) in the (sub-)Arctic have been especially marked not only by high summer insolation but also by rising sea level and the final disintegration of large ice sheets that had been established during the preceding glacial phase. Two sediment cores with multidecadal resolution from the Western Svalbard margin have been investigated for its planktic foraminiferal distribution, sea surface temperatures, planktic and benthic stable isotope ratios, and lithological parameters to derive information on the Holocene
variability of the heat transport to the Arctic Ocean and related fluctuations of the marginal ice zone in the eastern Fram Strait. Planktic foraminifer fauna and a summer sea surface temperature reconstruction based on the modern
analogue technique imply a stepwise transition from deglacial/Early Holocene to modern-like conditions in the eastern Fram Strait. Repeated short-term advances of the sea ice margin accompanied the generally strong heat transport to the Arctic Ocean during the Early to Mid-Holocene. Consistent with the decreasing solar insolation, cooler (sub-)surface conditions established after ca 5 cal ka BP most likely related to both a weakening of the
Atlantic Water inflow and strong export of Arctic sea ice through Fram Strait. The Late Holocene Neoglacial phase was characterized by high contents of ice-rafted material and dominance of the cold water-indicating planktic
foraminifer species Neogloboquadrina pachyderma. Cool Late Holocene conditions are reversed by a strong warming event likely caused by a significant strengthening of Atlantic heat advection to the Arctic during the
present, anthropogenically influenced period
Highly-ordered graphene for two dimensional electronics
With expanding interest in graphene-based electronics, it is crucial that
high quality graphene films be grown. Sublimation of Si from the 4H-SiC(0001)
Si-terminated) surface in ultrahigh vacuum is a demonstrated method to produce
epitaxial graphene sheets on a semiconductor. In this paper we show that
graphene grown from the SiC (C-terminated) surface are of higher
quality than those previously grown on SiC(0001). Graphene grown on the C-face
can have structural domain sizes more than three times larger than those grown
on the Si-face while at the same time reducing SiC substrate disorder from
sublimation by an order of magnitude.Comment: Submitted to Appl. Phys. Let
Disorder-induced phonon self-energy of semiconductors with binary isotopic composition
Self-energy effects of Raman phonons in isotopically disordered
semiconductors are deduced by perturbation theory and compared to experimental
data. In contrast to the acoustic frequency region, higher-order terms
contribute significantly to the self-energy at optical phonon frequencies. The
asymmetric dependence of the self-energy of a binary isotope system on the concentration of the heavier isotope mass x can be explained by
taking into account second- and third-order perturbation terms. For elemental
semiconductors, the maximum of the self-energy occurs at concentrations with
, depending on the strength of the third-order term. Reasonable
approximations are imposed that allow us to derive explicit expressions for the
ratio of successive perturbation terms of the real and the imaginary part of
the self-energy. This basic theoretical approach is compatible with Raman
spectroscopic results on diamond and silicon, with calculations based on the
coherent potential approximation, and with theoretical results obtained using
{\it ab initio} electronic theory. The extension of the formalism to binary
compounds, by taking into account the eigenvectors at the individual
sublattices, is straightforward. In this manner, we interpret recent
experimental results on the disorder-induced broadening of the TO (folded)
modes of SiC with a -enriched carbon sublattice.
\cite{Rohmfeld00,Rohmfeld01}Comment: 29 pages, 9 figures, 2 tables, submitted to PR
The Computational Complexity of Knot and Link Problems
We consider the problem of deciding whether a polygonal knot in 3-dimensional
Euclidean space is unknotted, capable of being continuously deformed without
self-intersection so that it lies in a plane. We show that this problem, {\sc
unknotting problem} is in {\bf NP}. We also consider the problem, {\sc
unknotting problem} of determining whether two or more such polygons can be
split, or continuously deformed without self-intersection so that they occupy
both sides of a plane without intersecting it. We show that it also is in NP.
Finally, we show that the problem of determining the genus of a polygonal knot
(a generalization of the problem of determining whether it is unknotted) is in
{\bf PSPACE}. We also give exponential worst-case running time bounds for
deterministic algorithms to solve each of these problems. These algorithms are
based on the use of normal surfaces and decision procedures due to W. Haken,
with recent extensions by W. Jaco and J. L. Tollefson.Comment: 32 pages, 1 figur
Noncyclic covers of knot complements
Hempel has shown that the fundamental groups of knot complements are
residually finite. This implies that every nontrivial knot must have a
finite-sheeted, noncyclic cover. We give an explicit bound, , such
that if is a nontrivial knot in the three-sphere with a diagram with
crossings and a particularly simple JSJ decomposition then the complement of
has a finite-sheeted, noncyclic cover with at most sheets.Comment: 29 pages, 8 figures, from Ph.D. thesis at Columbia University;
Acknowledgments added; Content correcte
The structural properties of the multi-layer graphene/4H-SiC(000-1) system as determined by Surface X-ray Diffraction
We present a structural analysis of the multi-layer graphene-4HSiC(000-1})
system using Surface X-Ray Reflectivity. We show for the first time that
graphene films grown on the C-terminated (000-1}) surface have a
graphene-substrate bond length that is very short (0.162nm). The measured
distance rules out a weak Van der Waals interaction to the substrate and
instead indicates a strong bond between the first graphene layer and the bulk
as predicted by ab-initio calculations. The measurements also indicate that
multi-layer graphene grows in a near turbostratic mode on this surface. This
result may explain the lack of a broken graphene symmetry inferred from
conduction measurements on this system [C. Berger et al., Science 312, 1191
(2006)].Comment: 9 pages with 6 figure
Directed self-organization of graphene nanoribbons on SiC
Realization of post-CMOS graphene electronics requires production of
semiconducting graphene, which has been a labor-intensive process. We present
tailoring of silicon carbide crystals via conventional photolithography and
microelectronics processing to enable templated graphene growth on
4H-SiC{1-10n} (n = 8) crystal facets rather than the customary {0001} planes.
This allows self-organized growth of graphene nanoribbons with dimensions
defined by those of the facet. Preferential growth is confirmed by Raman
spectroscopy and high-resolution transmission electron microscopy (HRTEM)
measurements, and electrical characterization of prototypic graphene devices is
presented. Fabrication of > 10,000 top-gated graphene transistors on a 0.24 cm2
SiC chip demonstrates scalability of this process and represents the highest
density of graphene devices reported to date.Comment: 13 pages, 5 figure
Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2
Raman spectra were measured for mono-, bi- and trilayer graphene grown on SiC
by solid state graphitization, whereby the number of layers was pre-assigned by
angle-resolved ultraviolet photoemission spectroscopy. It was found that the
only unambiguous fingerprint in Raman spectroscopy to identify the number of
layers for graphene on SiC(0001) is the linewidth of the 2D (or D*) peak. The
Raman spectra of epitaxial graphene show significant differences as compared to
micromechanically cleaved graphene obtained from highly oriented pyrolytic
graphite crystals. The G peak is found to be blue-shifted. The 2D peak does not
exhibit any obvious shoulder structures but it is much broader and almost
resembles a single-peak even for multilayers. Flakes of epitaxial graphene were
transferred from SiC onto SiO2 for further Raman studies. A comparison of the
Raman data obtained for graphene on SiC with data for epitaxial graphene
transferred to SiO2 reveals that the G peak blue-shift is clearly due to the
SiC substrate. The broadened 2D peak however stems from the graphene structure
itself and not from the substrate.Comment: 27 pages, 8 figure
- …